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Abstract: This chapter deals with the approach of “within subjects” and focuses on single hypothesis 
testing. Both parametrical and non-parametrical versions are described. Every test is introduced, and 
the full step-by-step SPSS guidance is presented. The sections about effect size and about writing the 
report are included as well. 
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3.1. The paired samples t-test

General information
Paired t-test is used to compare two related means mostly coming from a repeated 
measures design. In other words, data are collected by two measures from each 
observation, e.g. before and after a process or a phenomenon. For example, a re-
searcher wants to test if the changes in the weight before and after a diet are sig-
nificantly different from zero.

Hypotheses
H0: There is no difference between the paired mean scores. 
H1: There is a difference between the paired mean scores.

Assumptions
There are the following assumptions associated with the paired samples t-test:

 – the level of measurement should be interval or ratio (what in SPSS is indicated 
as scale level of measurement);

 – the sample should be randomly selected which means that the data constitute 
a representative portion of the total population and every individual has the 
same chance to be selected into the sample (Verma & Abdel-Salam, 2019; Wa-
ters, 2011);

 – the difference scores (not the raw scores) should follow the normal distribution. 

Example
The community managing the apartment blocks has chosen a random group con-
sisting of 58 families living in middle-size flats. The group got the instructions 
about electricity savings and recommendation to use the tools of controlling the 
electricity expenses. We have recorded two electricity bills of every family—one 
from the period of before, and the other one—after the recommendations. 

Data info:
 – variable 1: pretest—expenses before the recommendation—measurement level: 

scale (values: recorded electricity expenses per flat per month in EUR);
 – variable 2: posttest—expenses after the recommendation—measurement level: 

scale (values: recorded electricity expenses per flat per month in EUR).

Testing the assumptions
Normality of distribution of differences

The first step in testing the normality of differences between scores is to calculate 
a new variable that is the difference between pretest and posttest values. 
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Figure 1. Calculating the difference between pretest and posttest values—path (1)

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 2. Calculating the difference between pretest and posttest values—path (2)

Source: The authors’ own elaboration, IBM SPSS screenshot.
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The commonly used test for testing the normality is the Kolmogorov-Smirnov 
test. This test compares the set of scores obtained in the study to the normally 
distributed scores.

The procedure of running the Kolmogorov-Smirnov test is shown in part 3,  
chapter 1. Of course, in the paired samples t-test we don’t split the file and we 
measure only one variable—difference.

Figure 3. Kolmogorov-Smirnov test—results

Source: The authors’ own elaboration, IBM SPSS screenshot.

We decide about the hypothesis by interpreting the p-value. If the test is sig-
nificant (p <. 05) it means that the data do not follow normal distribution. If the 
test is non-significant (p > .05) the distribution of the obtained scores is normal 
(Field, 2013; Verma & Abdel-Salam, 2019). In this case, p ≥ .200 which means that 
the assumption of normality is fulfilled.
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Figure 4. Paired samples t-test—path

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 5. Paired samples t-test—dialog box

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Figure 6. Paired samples t-test—results

Source: The authors’ own elaboration, IBM SPSS screenshot.

Results
In the upper table of the outcome (Paired Samples Statistics) we can read that the 
mean for the pretest is 59.53 and for the posttest is 55.95. It means that the average 
electricity bill declined by 3.58 EUR.
In the lowest table we can check if the difference is statistically significant by inter-
preting the p-value from the last column (Sig. 2-tailed). This value equals p < .001 
which is lower than the critical value p = .05. It means that we can reject the null 
hypothesis and interpret the results as the statistically significant difference between 
pretest and posttest.

Paired samples t-test hypotheses resolution:
p < .05—there is a significant difference between pretest and posttest; reject H0;
p > .05—there is no significant difference between pretest and posttest; do not 
reject H0.

Effect size
In order to examine whether the observed difference is important, we can calculate 
effect size. For paired samples t-test a popular measure is Cohen’s d:

1 2

pre

x x
d s

−
=

x1, x2  – means of both groups;
spre – standard deviation of the pretest group.
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The Cohen’s d has the following interpretation:
Below 0.2—no effect,
< 0.2 – 0.5)—small effect,
< 0.5 – 0.8)—medium effect,
0.8 and more—large effect.

55.95 59.53
1.04

3.45
d

−
= =

In our case, we can observe the large effect (d = 1.04).

Summary
The community managing the apartment blocks has chosen a random group con-
sisting of 58 families living in middle-size flats. The group got the instructions 
about electricity savings and recommendation to use the tools of controlling the 
electricity expenses. We have recorded two electricity bills of every family—one 
from the period of before, and the other one—after the recommendations. 

Data info:
 – variable 1: pretest—expenses before the recommendation—measurement level: 

scale (values: recorded electricity expenses per flat per month in EUR);
 – variable 2: posttest—expenses after the recommendation—measurement level: 

scale (values: recorded electricity expenses per flat per month in EUR).
The electricity expenses of the households changed significantly after recom-

mendations t(58) = –7.857, p < .001, d = 1.04. The bills decreased on average from 
59.53 EUR (SD = 3.45) to 55.95 EUR (SD = 4.24). A t-test revealed that the differ-
ence of 3.58 EUR is statistically significant (p < .001), suggesting that the informed 
groups spent less on electricity than the control group. Cohen’s d statistic indicates 
the large effect. 

More info about the paired samples t-test
In order to estimate the effect size, we used pretest standard deviation as a baseline. 
The proposed formula of calculating the denominator is used especially when 
standard deviation is expected to be increased remarkably by the treatment. Nev-
ertheless, the formula of standard deviation in the denominator may be calculated 
in other ways. The highly recommended estimate of the baseline is sav given by the 
following formula:

2 2

2
pre post
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s
+
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It enables us to compare the results with effect size d estimations for one group 
or two independent groups. However, sometimes in the literature the effect size is 
calculated using standard deviation of differences between scores. This approach 
is not very advisable since it may give notably different estimations in comparison 
with different methods (e.g. when the standard deviation of differences is small, 
the d estimation is larger than the calculation with sav) (Cumming, 2012).
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3.2. Wilcoxon signed-rank test

General information
The Wilcoxon signed rank test is a commonly used nonparametric alternative to 
the paired samples t-test (when the assumptions are violated). It applies to the 
related samples when we compare the scores in two different points or under two 
different conditions (e.g. before and after the treatment). It is also used when the 
dependent variable is measured at ordinal scale. Since the Wilcoxon signed rank 
test does not require the normality of distribution of the data, it does not compare 
means but ranks ranks (Pallant, 2011; Verma & Abdel-Salam, 2019).

Hypotheses:
H0: There is no difference between the scores. 
H1: There is a difference between the scores.

Assumptions
There are the following assumptions associated with the Wilcoxon signed-rank test:

 – the level of measurement of dependent variable must be at least ordinal;
 – the score of both groups should be related. 

Example
Dataset: The company managing sharing bicycles decided to check the impact of the 
station location on use of the bicycles. The station was set 200 m from the entrance 
of the high school. Random sample of the students has been selected. Students were 
asked about the frequency of using the bicycles. In the middle of the semester the 
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company set the station closer to the entrance. After one month, the same group 
of students were asked about the frequency of using bicycles again. 

Data info:
 – variable 1: pretest—ordinal (declared frequency of using the shared bicycles; 

1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never);

 – variable 2: posttest—ordinal (declared frequency of using the shared bicycles; 
1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never).

Figure 7. Wilcoxon signed-rank test—path

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 8. Wilcoxon signed-rank test—dialog box

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Figure 9. Wilcoxon signed-rank test—results

Source: The authors’ own elaboration, IBM SPSS screenshot.

Results
In the lowest table we can check if the difference is statistically significant by in-
terpreting the p-value from the last row (Asymp. Sig. (2-tailed)). This value equals 
p = .014 which is lower than the critical value p = .05. It means that we can reject 
the null hypothesis and interpret the results as the statistically significant difference 
between pretest and posttest.

Wilcoxon signed ranked test hypotheses resolution:
p < .05—there is a significant difference between pretest and posttest; reject H0;
p > .05—there is no significant difference between pretest and posttest; do not 
reject H0.

Effect size
The effect size measure for Wilcoxon signed ranked test is r that is calculated using 
the statistic Z value and N which is total number of observations in both groups 
(the sum of observations in two groups):
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Z
r

N
=

The r has the following interpretation:
Below .1—no effect,
< .1 – .3)—small effect, 
< .3 – .5)—medium effect,
.5 and more—large effect (Field, 2013; Pallant, 2011).

2.449
.29

70
r

−
= =

In our example, r = .29 which may be considered as a small effect.

Summary
Dataset: The company managing sharing bicycles decided to check the impact of the 
station location on use of the bicycles. The station was set 200 m from the entrance 
of the high school. Random sample of the students has been selected. Students were 
asked about the frequency of using the bicycles. In the middle of the semester the 
company set the station closer to the entrance. After one month, the same group 
of students were asked about the frequency of using bicycles again. 

Data info:
 – variable 1: pretest—ordinal (declared frequency of using the shared bicycles; 

1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never);

 – variable 2: posttest—ordinal (declared frequency of using the shared bicycles; 
1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never).

After relocation of the station, the frequency of using the shared bicycles changed 
significantly Z(35) = –2.45, p = .014. The students used the shared bicycles more 
frequent (Mdn = 4) compared to the initial location (Mdn = 5). However, effect 
size is rather small (r = .29).
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