
 Experimental design  
and biometric research. 

Toward innovations

Sylwester Białowąs
Editor



Poznań 2021

 Experimental design  
and biometric research. 

Toward innovations

Sylwester Białowąs
Editor



Poznań 2021

 Experimental design  
and biometric research. 

Toward innovations

Sylwester Białowąs
Editor



EDITORIAL BOARD
Barbara Borusiak, Szymon Cyfert, Bazyli Czyżewski,  

Aleksandra Gaweł (chairwoman), Tadeusz Kowalski, Piotr Lis, Krzysztof Malaga,  
Marzena Remlein, Eliza Szybowicz (secretary), Daria Wieczorek

REVIEWER
Renáta Benda Prokeinová

COVER DESIGN
Piotr Gołębniak

STATISTICAL EDITOR
Wojciech Roszka

MANAGING EDITOR
Grażyna Jeżewska

PROOFREADER
Katarzyna Smith-Nowak

DTP: eMPi2

Reginaldo Cammarano

Publication financed by Polish National Agency for Academic Exchange 
Project Central European Network for Sustainable and Innovative Economy, 

no. PPI/APM/2019/1/00047/U/00001

© Copyright by Poznań University of Economics and Business
Poznań 2021

eISBN 978-83-8211-079-1
https://doi.org/10.18559/978-83-8211-079-1

This textbook is available under the Creative Commons 4.0 license— 
Attribution-Noncommercial-No Derivative Works

POZNAŃ UNIVERSITY OF ECONOMICS AND BUSINESS PRESS
ul. Powstańców Wielkopolskich 16, 61-895 Poznań, Poland

phone: +48 61 854 31 54, 61 854 31 55
www.wydawnictwo.ue.poznan.pl, e-mail: wydawnictwo@ue.poznan.pl

postal address: al. Niepodległości 10, 61-875 Poznań, Poland

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


CONTENTS

PREFACE  ........................................................................................................................... 5

PART I 
PLANNING AN EXPERIMENT

Sylwester Białowąs, Atanaska Reshetkova, Adrianna Szyszka
1. EXPERIMENTAL DESIGN  ..................................................................................... 9

1.1. Introduction to the experimental method  ....................................................... 10
1.1.1. The definition of experiment  .................................................................. 10
1.1.2. Experiments and other methods of scientific research  ....................... 11
1.1.3. Research design: type of data  .................................................................. 12
1.1.4. Application in economics and management  ......................................... 13

1.2. Key concepts prior to planning an experiment  ............................................... 13
1.2.1. Causality  .................................................................................................... 13
1.2.2. Independent and dependent variables  ................................................... 14
1.2.3. Experimental and control groups  ........................................................... 16
1.2.4. Selecting research participants  ............................................................... 17

1.3. Planning an experiment  ...................................................................................... 18
1.3.1. Defining the problem and research questions  ...................................... 18
1.3.2. Null and alternative hypotheses as well as significance  ....................... 19
1.3.3. Data presentation and report structure (APA standards)  ................... 19

1.4. Types of experimental research design  ............................................................. 24
1.4.1. Within-subjects and between-subjects experimental designs  ............ 25
1.4.2. Different types of experimental designs  ................................................ 28

1.5. Conducting experiments  .................................................................................... 29
1.5.1. Internal and external validity  .................................................................. 29
1.5.2. Experimental errors (threats to validity)  ............................................... 30
1.5.3. Ethics in experimentation  ....................................................................... 34

PART II 
CONDUCTING BIOMETRIC RESEARCH

Sylwester Białowąs, Adrianna Szyszka
1. EYE-TRACKING RESEARCH  ............................................................................... 39

1.1. Eye-tracking—what it is and how it works  ....................................................... 40



4  

Contents

1.2. What can be examined using eye-tracking  ...................................................... 41
1.3. How eye-tracking research is prepared  ............................................................. 42
1.4. Visual activity testing rules  ................................................................................. 44
1.5. Before the experiment (proper usage of the equipment, calibration, 

recording)  ............................................................................................................. 45
1.6. Data preparation (adding reference image, adjusting gaze points, adding 

areas of interests, dividing videos, groups) ....................................................... 50
1.7. Analysis using default charts  .............................................................................. 52
1.8. Exporting data for advanced analysis  ............................................................... 57

Bartłomiej Pierański, Jakub Berčík
2. RESEARCH ON ELECTRODERMAL ACTIVITY  ............................................ 61

2.1. What is electrodermal activity and why consumers can be better 
understood by measuring it?   ............................................................................. 62

2.2. Types of electrodermal activity  .......................................................................... 63
2.3. Measurement of electrodermal activity  ............................................................ 65
2.4. How to successfully conduct experiments on EDA (step-by-step guide)  .... 71

2.4.1. Equipment preparation  ............................................................................ 71
2.4.2. Acquiring EDA data  ................................................................................. 75
2.4.3. Analysing EDA data  ................................................................................. 79

2.5. Case study—Perception of a humanoid robot  ................................................. 85

PART III 
DATA ANALYSIS

Sylwester Białowąs, Blaženka Knežević, Adrianna Szyszka, Berislav Žmuk
1. INDEPENDENT SAMPLES—SINGLE HYPOTHESIS TESTING  ................ 91

1.1. Independent samples—t-test .............................................................................. 92
1.2. Mann-Whitney U test   ........................................................................................ 101
1.3. One-way analysis of variance (ANOVA)   ......................................................... 106
1.4. Kruskal-Wallis H test   ......................................................................................... 121

Blaženka Knežević, Berislav Žmuk
2. INDEPENDENT SAMPLES—MORE HYPOTHESES TESTING  .................. 129

2.1. Two-way analysis of variance (ANOVA) without replication   ...................... 130
2.2. Two-way analysis of variance (ANOVA) with replication   ............................ 139

Sylwester Białowąs, Adrianna Szyszka
3. DEPENDENT SAMPLES—SINGLE HYPOTHESIS TESTING  ..................... 153

3.1. The paired samples t-test  .................................................................................... 154
3.2. Wilcoxon signed-rank test  .................................................................................. 160



PREFACE

Over the past years, experiments went in the world of economists from a very rare 
and not really recognized method into the standard tool for empirical research. 
This book provides the basic knowledge about using experiments in economics 
and practical tools for using them. The topic is extended to the more advanced 
and increasing in popularity area of biometric research. 

The book is divided into three parts mirroring experimenting. 
The first part provides theoretical background and tips about organizing own 

research. The chapter is concluded with a guide focused on writing a research 
report in APA style. This part includes an example of the actual research report. 

The next part has two chapters, and both are guided tours allowing to plan and 
conduct eye-tracking research and electrodermal activity research (EDA). 

The last part is devoted to the data analysis. There are three chapters in this 
part covering the common procedures used in analysis of experiments (all types 
of experiments, not only biometric). The first part includes tests for one hypoth-
esis: parametric t-test and one-way ANOVA and non-parametric siblings: Mann-

-Whitney U test and Kruskal-Wallis H test. The next part describes test allowing 
testing more hypotheses: ANOVA without repetition and ANOVA with repeti-
tions. Furthermore, the last chapter deals with dependent samples, which are a 
popular approach in experiments. This part describes the dependent sample t-test 
and Wilcoxon test. The effect sizes calculations are included; each test is shown 
with screenshots from SPSS and some additional screenshots from Excel. This 
approach allows following the procedure step-by-step. To help easily understand 
procedures and interpretations, all the examples are basic; they were chosen from 
areas of sustainability and innovations to match the general idea of the e-books 
series prepared within the CENETSIE program. 

The book contains texts that can be useful in the teaching process. They can be 
used in graduate programs in economics and business schools, some programs of 
doctoral schools will benefit from this book as well.
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Conducting experiments can take place in laboratory conditions, but also in natural environ-
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obtain results that can be generalised to the entire population. In other words, planning experiments 
requires considering many aspects related to their internal and external validity. The key aspect that 
needs to be considered in conducting experiments is proper problem defining, as well as the concepts 
of causality, manipulation or null and alternative hypotheses. It is also worth bearing in mind that 
in social sciences, when engaging participants in research, caution must be exercised. Depending 
on whether each participant of the experiment is exposed to all conditions or different people test 
different ones, the classification of experiments is distinguished into within-subjects and between-
subjects design. In this chapter, the most commonly used experimental designs in this division are 
presented. However, the experimental method offers more complex schemes such as randomised 
block design or Latin square design. Finally, the obtained findings should be properly presented—in 
the form of a report following APA standards.
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1.1. Introduction to the experimental method

1.1.1. The definition of experiment

The experimental model is the best way to check research hypotheses about cause 
and effect relationships between variables. Experiments allow a researcher to ob-
serve and influence a specific phenomenon. Conducting an experiment requires 
a precise definition of the problem under investigation, as well as analysis of the 
conditions related to the phenomenon (Stachak, 1997, p. 146). Thus, an experiment 
should be defined as a conscious, purposeful and planned evocation of specific 
states and processes. While performing the experiment, the researcher deliberately 
changes certain factors in the examined situation and, at the same time, controls 
other factors in order to learn what the effects of the undergoing change are in the 
course of observation (Sułek, 1979).

An experiment depends on manipulating one or more independent vari-
ables and measuring their effect on one or more dependent variables while 
simultaneously controlling the effect of extraneous variables (Burns, Veeck, & 
Bush, 2017; Malhotra, Nunan, & Birks, 2017). In other words, experiments help 
discover causal relationships and ensure that the observed effect concerning the 
dependent variable is because of the independent variable and not due to other 
aspects (extraneous variables) (Burns et al., 2017). For example, if checking the 
effectiveness of fertiliser for plants, in the experiment, two flowers are planted 
separately and their growth is observed for 60 days, with one of the plants being 
additionally fertilised.

The three key concepts related to experimental research are: 
• independent variable manipulation (in the example, one of the flowers will be 

additionally fertilised);
• control of extraneous variables, which may be relevant for the independent 

variable (in this example, it must be certain that the two flowers grow under 
similar conditions, i.e. the flowers are planted close together, have the same 
lighting parameters and get the same amount of water every day);

• variability measurement of a dependent variable resulting from the researcher’s 
influence on this variable using independent variables (Brzeziński, 1999, p. 282). 
An important distinction is the division of experiments into those performed at 

a laboratory and in the field. In the case of laboratory experiments, the researcher 
creates an artificial environment meeting conditions for the tested problem. Field 
experiments are carried out under real market conditions (Malhotra et al., 2017). 
Conducting experiments in natural settings creates a more realistic environment 
but is more expensive and time-consuming in comparison to laboratory experi-
ments (Hair, Bush, & Ortinau, 2003).
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1.1.2. Experiments and other methods of scientific research

There are three types of research designs, i.e. exploratory, descriptive and causal. 
Together, descriptive and causal methods are called conclusive (Malhotra et al., 
2017). The main difference between these categories regards their goals—in explora-
tory studies, the researchers aim to understand the nature of the problem, while in 
those conclusive—measuring the phenomenon and examining dependencies are 
of concern (Malhotra et al., 2017). Exploratory research designs are used to clarify 
and define the problem, obtain additional insights and formulate research objectives. 
It is especially helpful when little is known about the investigated phenomenon 
(Burns et al., 2017). Exploratory methods find their application when the problem 
is difficult to be measured quantitatively (Malhotra et al., 2017).

Descriptive studies provide information about certain aspects of the problem: 
who, what, where, when and how. This research design allows researchers to de-
scribe and measure the phenomena (Burns et al., 2017). This process should be 
preceded by formulating a hypothesis and defining a problem. This is usually the 
description of market characteristics or functions that are planned, structured and 
based on a representative sample (Malhotra et al., 2017). 

The last category—causal research designs, enable the measurement of causality 
in relationships which can be observed when one (or more) variables affect one 
(or more) variables (Burns et al., 2017). Experiments are the primary method 
among causal research designs (Malhotra et al., 2017), providing the researcher 
with the ability to answer the question as to why something occurs and why it may 
be observed under specific conditions. Examining cause and effect dependencies 
further allows the researchers to make predictions about various phenomena 
occurring on the market (Hair et al., 2003). The experiments are considered as 
research designs that measure the causes and effects of the variables most ac-
curately. Non-experimental studies that are also used for examining cause and 
effect relationships sometimes do not fulfil all the aspects of causality (Malhotra 
et al., 2017).

Advantages of the experimental method include:
• enabling the verification of cause-effect relationships relatively easily in com-

parison to other methods (Moore, McCabe, Alwan, Craig, & Duckworth, 2011);
• helping the researcher to control the experimental conditions and factors that 

are not significant for the study (Moore et al., 2011);
• easy replication (experiments are repeated more often than other methods), 

proving the experiment’s accuracy (Sułek, 1979);
• making it possible to study the simultaneous influence of more than one fac-

tor—separately, the variables may affect a dependent variable in a different way 
than their interaction (Moore et al., 2011).
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Limitations of the experimental method include:
• the researcher potentially not being able to control extraneous variables, par-

ticularly in field experiments (Malhotra et al., 2017);
• being time-consuming—especially when the effects of the manipulation are 

examined in the long run (e.g. effectiveness of an advertising campaign) (Mal-
hotra et al., 2017);

• conducting the experiment on many occasions being relatively expensive (Mal-
hotra et al., 2017);

• potential ethical implications of the conducted experiments (Burns et al., 2017);
• the experiment’s results potentially being affected by the artificiality of an ex-

perimental situation (Moore et al., 2011). 

1.1.3. Research design: type of data

In research design, there are two types of data. The first category refers to the kind 
that is not obtained by the researcher in the research project or that has been col-
lected for other purposes. This group of data sources refers to surveys and records 
that are prepared by different companies or organisations. If this data is publicly 
available, the researcher may use it for research purposes (Burns et al., 2017). It 
is usually in the form of written documents and is referred to as “desk research”. 
Secondary data is helpful both in defining the objectives of a study and confronting 
the obtained results. The fact that the data was collected previously by someone 
else makes it relatively inexpensive and easy to access. On the other hand, since 
it has been collected for different purposes, the secondary data may cover issues 
that do not fit perfectly with the research objectives. There is also a risk that this 
information will be out of date. The secondary data may be obtained from govern-
ment sources represented by statistical departments. Information is also provided 
by academic sources and company documents or annual reports. Secondary data 
come from market research publishers, organisation websites and even private 
citizens (Bridley, 2013). 

Primary data is collected intentionally for a specific purpose. The researcher 
obtains this kind of data while conducting the research project (Bridley, 2013; Burns 
et al., 2017). She/he has various possibilities to contact participants and gain the 
information. This may take place by phone, e-mail, post and/or in person. Among 
the forms of this kind of data, we can distinguish interviewing and self-completion 
methods (Bridley, 2013). Experimentation also belongs to this category as a form 
of gathering primary quantitative data (Malhotra et al., 2017).
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1.1.4. Application in economics and management

The experimental method (including field experiments) is commonly used in 
marketing research, especially in the aspects of communications and advertis-
ing (Malhotra et al., 2017). In this area, a popular practice is test marketing 
which is a type of field experiment. The researchers mostly use test marketing 
for two purposes—to evaluate the sales potential of a product or service or to 
test elements of the marketing mix. Furthermore, test markets are used to as-
sess media usage, prices or sales promotions. Although this practice may be 
expensive for the company, it enables in-advance testing if the product may 
succeed in the market. There are four main types of test markets—standard, 
controlled, electronic and stimulated. Standard test markets may provide reli-
able results because they are conducted in real settings, i.e. using the regular 
distribution channels of the company. In a controlled model, the experiments 
are conducted by out-company research firms that test the adjusted distribu-
tion channels (Burns et al., 2017). Electronic test markets depend on gathering 
data from consumers who use an identification card that registers the purchase 
of goods or services. In simulated test markets, researchers interview selected 
participants and observe their purchasing behaviours as well as attitude towards 
the product (Hair et al., 2003).

Experiments are successfully implemented in the area of organisational research. 
For example, in examining issues related to work efficiency, the profitability of 
an organisation, the level of task performance or the attitudes and satisfaction of 
employees (Stachak, 1997). Another field in which companies use experiments is 
consumer behaviour.

1.2. Key concepts prior to planning an experiment

1.2.1. Causality

Identifying causal relationships is one of the most interesting yet challenging re-
search goals in any scientific field. The concept of causality is rather simple to 
understand: when one phenomenon is the reason why another manifests, then 
we have a cause and its effect. How to validate this assumed causal relationship is 
a question requiring more attention. As in any other research methodology, the 
experimental method has certain significant criteria that need to be met in order 
to conclude that a causal relationship really exists.

In any book of statistics and/or research methodology, it is said that correla-
tion does not necessarily mean causation. Two variables can be associated and this 
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still might not mean that one of them is responsible for the changes in the values 
(levels) of the other. There may be, for example, a third variable influencing both 
of them, and thus—making them seem like a cause and its effect, when they are 
actually both an effect of another cause variable. The pollution of oceans and of 
air are correlated, but that does not mean that one is a cause of the other. However, 
the correlation between two variables is the first criterion to pronounce their rela-
tionship for causation. In other words, the researcher must be sure that there is an 
observed association between the cause variable (also called independent variable), 
and the effect variable (dependent variable).

Another important condition is that the cause must precede the effect. Only this 
way can we assume that the variation in the independent variable is the cause for 
variation in the dependent one. For example, suppose we are trying to prove that bad 
marks at school make admission to college harder. The marks should be received 
before students send their application to a given college—any other way around 
contradicts common logic. There are many cases in which it is difficult to decide 
which came first which makes pointing to the cause and effect variables difficult. 

To conclude that there is a causal relationship between any two phenomena, 
it is necessary to manipulate the impact of the influencing factor, to control all 
other factors that may influence the test subjects and to compromise the validity 
of the results. Of course, this is possible only if we conduct an experimental study 
to conclude causality. The adoption of any other research strategy may lead to the 
assumption of some correlational degree between variables, which solely, cannot 
serve as an argument for causality. The choice of experimental design plays a criti-
cal role in drawing a conclusion about the causality.

Finally, testing for causality requires the influencing factor to have at least two 
levels to compare their effects on the response variable. 

1.2.2. Independent and dependent variables

As previously stated, in experimental data we can identify two types of variables: 
dependent and independent. The independent variables are those manipulated 
by the researcher with the expectation that they will cause some effect on the ex-
perimental subjects. If no effect is observed, the reason could be either that there 
is no causal relationship or that the manipulation of the independent variable was 
not done properly. For example, the researcher may choose to experiment with 
only two levels of the variable while there are three or more that can be tested. 
The dependent variables represent the response and their values are expected 
to be a result of independent variable manipulation. In social experiments, de-
pendent variables may measure, for example, the actual or intended behaviour 
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of participants, or different psychological processes. Choosing the right depend-
ent variables that can actually capture the supposed effect is just as important as 
the right manipulation of the independent variables. Sometimes more than one 
dependent variable can be used in order to ensure accurate measurement. The 
manipulation and application of the independent variable on the participants is 
often called ‘treatment’. 

The goal of the experiment is to determine the function f that relates the depend-
ent variable y to the independent variables x1, x2, x3 …, xk, i.e., the cause and effect:

y = f (x1, x2, x3 …, xk)

The independent variables are also called factors. There are different types of 
factors: 
• Continuous factors—these are variables that can assume any value in a given 

interval. Values taken on by continuous factors are therefore represented by 
continuous numbers.

• Discrete factors—these can assume only a limited number of values. Values 
taken on by discrete factors can be names or words. Numbers are usually used 
as codes or labels, and not to denote quantity. For example, the type of labelling 
used on a product—bio, natural, eco—represents the possible values (levels) 
that a discrete factor can assume.

• Ordinal factors—these are discrete factors that can be put in a logical order. 
For example, the ranking of some objects as first, second and third is an ordinal 
factor. Size defined as small, medium and large is also this type of factor. 
It should be noted that some continuous factors can be transformed into discrete 

or ordinal ones by creating two or more categories. For example, age is a continu-
ous factor that can be transformed into an ordinal one with three levels: young 
adults, adults, seniors.

Very often, researchers are interested in testing the effect of more than one 
independent variable at the same time. In experiments with two or more factors, 
an interaction between these factors can be observed. If there is an interaction 
between two independent variables, the effect produced by one of them is different 
at each level of the other one. For example, let us suppose that we want to compare 
the effect of different product packaging on consumer perception of its healthiness. 
We decide to manipulate two independent variables of the packaging—labelling 
(bio, natural, eco) and colour (green and blue). If the labelling has a different effect 
on consumers’ perceptions when the package is green and when it is blue, then 
this means that the two factors are in interaction. The mean values regarding the 
stated perceptions of the product healthiness across different levels of independent 
variables are presented in Figure 1 (a). 
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When the package is green and the product is labelled as “bio”, it is perceived 
as healthier than when the labelling is “natural” or “eco”. But when the package 
is blue, the product is perceived as healthiest if it is labelled as “eco”. We can 
conclude that there is an interaction between these two factors. It should be 
borne in mind that when there is a significant interaction between the independ-
ent variables, it is only meaningful to interpret the interaction effects on the 
dependent variables. 

Figure 1. Interaction between independent variables (a). No interaction between independent 
variables (b)

Source: Own elaboration.

If no interaction exists, then each independent variable effect is interpreted. With 
regard to the previous example, if there is no interaction between the factors, the 
results would look like those presented in Figure 1 (b). The product is perceived 
as healthiest when it is labelled “bio”, followed by “natural” and “eco”. This does 
not change when the colour of the packaging changes from green to blue. When 
the packaging is green, the product is perceived as healthier than when it is blue, 
regardless of the labelling. These independent effects of each factors are called 
main effects. 

1.2.3. Experimental and control groups

In order to test for a causal relationship between two variables, the one assumed as 
the cause should be manipulated and the participants exposed to its impact. Then, 
the response variable should be measured. Following, it needs to be concluded 
whether a significant effect is observed. There are different ways to organise the 
experiment depending on its goals and the studied phenomena. Sometimes, all 
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participants are subjected to the same levels of the independent variables and other 
times—they are divided into groups, each group subjected to a different level of 
the independent variable. The specific way of dividing participants into groups 
and applying treatments is discussed later in this chapter. However, participants 
in every experiment can be distributed either in an experimental or in a control 
group. Every experiment has at least one experimental group which is exposed to 
one or more factor levels. A true experiment includes a control group as well. This 
is a group of participants not subject to the impact of any factor, thus, providing 
a baseline for comparison of the dependent variables’ mean values. 

1.2.4. Selecting research participants

While conducting research, the main purpose is to draw conclusions about the 
population that is the entire group under the study. However, markets sometimes 
consist of millions of individuals and the researcher is not able to carry out the ex-
periment on the entire group. Conducting the experiment on the whole population 
would be time-consuming, expensive and also ineffective. Fortunately, in order to 
achieve research objectives, the researcher may use a sample (Burns et al., 2017). 
A sample is a subgroup of the population that represents the entire group and is 
selected for participation in the experiment. A representation should be suitable 
since the sample is designed to accurately reflect the characteristics of the group 
(Burns et al., 2017).

Sample sizes differ across different studies. In order to choose the number of 
elements to participate in a study, the researcher should take several aspects into 
account. It is crucial to consider the significance of the study, the number of vari-
ables, the sample sizes used in similar experiments and the available resources to 
conduct the study (Malhotra et al., 2017).

The way of assigning participants to samples induces the division into probabil-
ity and non-probability sampling. In probability sampling, each unit has a specific 
chance of being assigned to the sample—the general probability is known. On 
the other hand, in the non-probability designs, the selection of a sample depends 
on subjective criteria. In this case, the researcher may correctly assign units to 
the sample based on his/her expertise, but, at the same time, there is no way to 
ensure that this selection will be free from bias (Mazzochi, 2008). Therefore, 
the main difference among both schemes depends on the intervention of the 
researcher. In probability sampling, the selection of participants is determined 
by the applied method (Burns et al., 2017). In this chapter, focus will be mostly 
on probability sampling methods. In this group, the following methods of selec-
tion for the sample can be distinguished: simple random, systematic, cluster and 
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stratified sampling types. In the most basic of these methods—simple random 
sampling—participants have the same chances of being selected (the selection 
hinges on luck and probability). A similar procedure is systematic sampling, for 
which the participants are listed by the researcher who randomly selects only the 
first assigning number for the first unit in the sample. The rest of the participants 
is extracted consecutively following the selected starting point. In cluster sampling, 
the population is divided into complementary groups—each of them should 
reflect the population. The random selection applies to the clusters. This type of 
sampling is often an initial step in a more advanced procedure and is useful in 
relation to electronic databases (e.g. people whose name starts with the letter A, 
B, C, etc.) or geographical areas (cities, neighbourhoods). The method depend-
ing on dividing the population into groups is also stratified sampling. However, 
in the case of this sampling procedure, the groups are distinguished on the basis 
of the common characteristic so that the units are similar inside groups and het-
erogeneous among different strata. It is especially helpful when the distribution 
of the population is not normal.

1.3. Planning an experiment

1.3.1. Defining the problem and research questions

The key part of the research process is to properly define the problem. It is important 
because defining the problem influences the research questions, hypotheses and 
research procedure. If this part is not carried out correctly, there is a risk that we 
will not get answers to the issues that we want to examine. 

In economic practice, a problem is often defined after failure to achieve a goal 
or after an opportunity has been identified. After that, managers aim to understand 
the background of the problem, define what decisions should be made and learn 
about additional sources of information to fully understand it (Burns et al., 2017). 
This may constitute a basis for scientific exploration. Therefore, the first step in 
the research process is initial observation and identification of an issue that needs 
explaining. After finding a lack of knowledge and solutions in some areas, explora-
tory research should be conducted. It will help the researcher to better structure 
the problem and clarify the scope of the investigation. The common practice is to 
investigate previous studies regarding the topic. This step mainly involves conduct-
ing a review of literature—before further exploring the problem it is essential to 
examine scientific publications, books and articles relevant to the issue. On this 
basis, specific research questions should be identified, and then—the resulting 
hypotheses (Zikmund, Babin, Carr, & Griffin, 2010). 
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1.3.2. Null and alternative hypotheses as well as significance

By conducting an experiment, the researcher tries to verify whether the empirical 
evidence is consistent with the assumed hypothesis. In statistics, it is impossible to 
show that any statement is undeniably true. However, there are ways to show that 
some dependencies are not true. In this part of the chapter, the main assumptions 
of statistical hypothesis testing are presented. Here, the null hypotheses can be 
distinguished according to whether there is no difference between the groups that 
are compared in the study. The null hypothesis allows to suggest that no effect is 
observed but the researcher usually wants to demonstrate that there are dependen-
cies. Thus, there is an alternative hypothesis which predicts that there is a significant 
difference between the groups under study. This hypotheses is mainly the one that 
the researcher aims to support (Jackson, 2008). While conducting the experimental 
procedure, we want to reject the null hypothesis, which would indicate that the 
findings are consistent with the alternative hypothesis. 

The concept of statistical significance is crucial in testing statistical hypotheses. 
If some difference is statistically significant, this means that it does not happen by 
chance. In social sciences, the usually chosen level of statistical significance (alpha 
level) is 5%. It allows the researcher to reject the null hypothesis and indicates that 
the probability that the tested dependence is due to chance is 5 in 100 (Jackson, 2008). 

1.3.3. Data presentation and report structure (APA standards)

After planning, conducting the experiment and data analysis, the results should 
be properly presented. In this section, the principles of presenting and reporting 
results will be discussed. Creating the report follows the standards of scientific 
papers. The research should be fully clear for readers, the conclusions thoroughly 
explained and presented in a way that allows them to be compared to other stud-
ies. This is why the comprehensive standards of reporting are indispensable. The 
main rule is that all information relevant to the experiment should be included 
in the report. 

The structure of a typical report follows the structure of scientific articles and 
is presented below:
• Introduction (literature review, main hypotheses)
• Method (design, participants, procedure)
• Results
• Discussion (interpretation, limitations)

The document should also follow the formal structure including: title, abstract, 
keywords, references and appendix.
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Introduction

The first part of a report is the ‘Introduction’, in which the importance of the 
problem under study is shown. In this part, the ‘Literature review’ should 
also be presented—it is suggested to define the scope of the problem, its 
theoretical and practical aspects and to indicate what was the subject of 
research earlier and what remains unexplained. The main hypothesis should 
be formulated on the basis of the analysed theories. Thus, the introduction 
involves the description of the study goals as well.

Method

In the next part of the report, the implemented method(s) should be de-
scribed. The ‘Method’ section should contain a description of the study par-
ticipants, including information about their demographic characteristics (e.g. 
age, nationality, level of education), as well as aspects relevant to the study. 
Here, the procedures for selecting participants should be presented—the 
sampling method, time and place of collecting the data, agreements with 
participants and ethical and safety considerations. In the report, the number 
of participants taking part in the experiment, the number of participants 
in experimental and control groups as well as the number of participants 
that did not complete the experiment should be shown. The ‘Method’ sec-
tion involves the inclusion and exclusion criteria for participants. Then, 
there should be a description of the sample—the number of participants in 
the study and the planned sample size. If such procedures were used, the 
methodological part of the report should include information on masking 
the purpose of the study, training to which collectors were subjected or ad-
ditional methods. In this section, the research design (whether the between-
subjects or within-subjects procedure was applied), the conditions of the 
study (natural or manipulated) and the assignment to different conditions 
(if applicable) are described. If the experiment includes manipulations/
interventions, it should be precisely described what they consisted of and 
how they were applied—settings, the duration of exposure and the number 
of manipulations. 

Results

The next section of the report focuses on the ‘Results’ section of the experi-
ment. An accurate and impartial presentation of the results is the crucial 
part of the report. All the important results of the study should be presented 
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with attention to detail and as clearly as possible. In the report, data that are 
not consistent with the assumed hypotheses should not be omitted—the 
insignificant dependencies and small effect sizes should be mentioned as 
well. Raw data and additional materials may be included in the ‘Appendix’. 
When reporting the results, it is recommended to reflect the sequence of the 
hypotheses presented earlier. When it comes to statistical tests, reporting 
involves a sufficient set of statistics that are indispensable to understand the 
outcome. The description should include the value of the test statistic, the 
degrees of freedom, the p value and the magnitude of the effect. The measures 
of effect size may also be added to this section. 

Discussion

The next part of the report regards the ‘Discussion’ section. The next step, 
after presenting the results, is to interpret them and draw conclusions from 
the conducted experiment. It is important to keep this section consistent 
with the previous one regarding the results. In this section of the report, it 
should be indicated whether the findings support or do not support the 
hypotheses. If contradictory or unclear results are obtained, possible causes 
need to be indicated. Moreover, in the report, the results obtained in relation 
to the studies of other researchers are presented and the observed differences 
and similarities are explained. In general, the main implications of the study 
should be emphasized. In this section, the limitations and strengths of the 
study are given. 

Example

Perception time in forming attitudes towards art

Abstract: In the study, it is examined whether an extremely short expo-
sure to stimuli enables the formulation of aesthetic judgments. In order to 
determine the time of aesthetic experience formation, an experiment has 
been conducted in which 12 paintings were displayed during 40 ms. In the 
previous study, 40 ms was assessed as the minimum exposure duration to 
process the visual stimuli. The initial judgments were confronted with the 
judgments formed after longer exposure (10 s). By comparing long- and 
short-term exposure, it is possible to establish consistency of the observed 
judgments. The database comprises pairs of works of art by the same artists 
with a similar composition and auctioned at similar prices, which makes it 
possible to assess the consistency of judgments with regard to a particular 
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style. The experiment was conducted on a sample of 30 participants. The 
main findings allow to indicate that 40 ms is a sufficient time to formulate 
aesthetic judgment. 

Keywords: art perception, formulating aesthetic judgments.

Introduction

When thinking of an aesthetic judgment, it must be considered how well 
a work of art expresses and influences others with feelings and emotion.  
The processes underlying the aesthetic experience have been described 
from both perceptual/cognitive and motivational viewpoints. 

In previous research, it has been confirmed that ultra-short exposures 
(below 1 s) may be sufficient to formulate aesthetic judgements and attitudes. 
Cupchik and Berlyne (1979) assessed whether people are able to distinguish 
collative properties with presentation times of 50 ms. They have confirmed 
that this time allowed the participants to obtain relevant visual information. 
Locher, Krupinski, Mello-Thoms and Nodine (2007) noted that the time 
needed to form a significant holistic impression of the painting is about 
100 ms.

The most extreme time range was tested in the study by Augustin, Leder, 
Hutzler and Carbon (2008). They found that 10-ms exposure may be enough 
to find traces of visual processing effects. In the same study, they confirmed 
such a significant effect after the presentation of 50 ms.

Main hypotheses

The previous study allows us to state that within the range of 50 to 100 ms, 
people are able to process visual stimuli and formulate judgment. We aimed 
to test if the shorter presentation time could be sufficient for similar effects 
to be observed.

The main hypothesis allows to indicate that a presentation time of 40 ms 
is sufficient to formulate aesthetic judgments. 

Method

In the study the within-subjects, one-group pretest–posttest design was used. 
There was one independent variable (exposure time) with two levels (40 ms, 
10 s). The dependent variable was the aesthetic pleasure measured as a self-re-
ported assessment on the interval scale of 0 (not at all) to 10 (extremely pleasing).
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Participants

The recruited participants were students from PUEB. The sample included 
52 participants who were not selected randomly. There were 35 women and 
17 men between the age of 18 and 31.

Procedure (including technical aspects)

The study took place under manipulated conditions—in the laboratory 
at the university. We have displayed the stimuli on a 75-inch screen in 
constant and dimmed light conditions. In the first stage of the experiment, 
each participant was shown 9 images for 40 ms each. After every stimu-
lus, the participants evaluated their experience by answering the question 
as to whether the image was pleasing. Each image was preceded by one 
second of a grey screen with a cross sign in a circle (attention focusing 
point assuring same visual range for each picture). The second stage was 
a series of tasks not related to the experiment which was intended to clear 
the short-term memory of the previously seen stimuli. The third stage was 
conducted in the same manner as the first one, but the exposure time for 
each picture was 10 s. 

Results

In order to test aesthetic judgment, it was decided to test if there was a dif-
ference between scores obtained for short- and long-time exposures. Due 
to the lack of normal distribution of differences, we decided to apply the 
Wilcoxon signed-rank test performed 12 times for each picture separately. 
In 11 cases, it was found that there were no differences between scores (see 
appendix)—p value was higher than the assumed alpha level (p > .05).

In one example, it was found that the evaluation of experience (whether 
the image was pleasing) changed significantly Z(52) = –2.54, p = .011. The 
evaluation that the image was pleasing for the 40-ms exposure time was 
higher (Mdn = 5) compared to the 10-s exposure (Mdn = 4). However, the 
effect size was rather small (r = .25). 

Discussion

The findings are consistent with the assumed hypotheses that the visual 
exposure of 40 ms can be sufficient to formulate aesthetic judgment. This 
means that the obtained results are consistent with the previous findings. 
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In our study, it was shown that aesthetic judgment may be formed even in 
a shorter time (40 ms) than expected by other researchers. 

Limitations

It may be considered whether the second stage sufficiently separated both 
experiences of processing visual stimuli. For future research, random sam-
pling could also be considered. In further research, an even shorter time 
for the initial exposure could be applied—our results do not ensure that 40 
ms is the limit of processing visual information enabling the formulation 
of aesthetic judgment. 

References and appendix

Here, tables with detailed results should be presented. Due to the space 
limitations in this sample report, they have not been included. 

References
Augustin, D. M., Leder, H., Hutzler, F., & Carbon, C.-C. (2008). Style follows content: on the 

microgenesis of art perception. ActaPsychologica, 128(1), 127–138. https://doi.org/10.1016/j.
actpsy.2007.11.006

Cupchik, G. C., & Berlyne, D. E. (1979). The perception of collative properties in visual stimuli. 
Scandinavian Journal of Psychology, 20(2), 93–104. https://doi.org/10.1111/j.1467-9450.1979.
tb00688.x

Locher, P., Krupinski, E. A., Mello-Thoms, C., & Nodine, C. F. (2007). Visual interest in pic-
torial art during an aesthetic experience. Spatial Vision, 21(1–2), 55–77. https://doi.
org/10.1163/156856807782753868

1.4. Types of experimental research design

In this chapter, we will focus mainly on true experimental designs. However, we 
present other types of experiments as well to properly adjust the design to the goal 
of the study. 

https://doi.org/https://doi.org/10.1111/j.1467-9450.1979.tb00688.x
https://doi.org/https://doi.org/10.1111/j.1467-9450.1979.tb00688.x
https://doi.org/10.1163/156856807782753868
https://doi.org/10.1163/156856807782753868


25  

Experimental design

1.

1.4.1. Within-subjects and between-subjects experimental 
designs

Conducting an experiment involves deciding what specific experimental design 
is to be used. Only after this decision is made, we can determine other important 
elements of the experimental procedure. Experimental design refers to the way 
of organising the tested subjects and intervening factors so as to minimise the 
uncontrolled variation in the effect variable. Of course, the choice of experimental 
design depends mainly on the purpose of the experiment and the nature of the 
studied phenomena, but also requires balance between the ability to correctly detect 
an existing causal effect and the precision with which this effect can be measured 
(Bellemare, Bissonnette, & Kröger, 2014). However, this is not the only considera-
tion that makes the choice of an experimental design critical for the success of the 
study: the results can vary considerably depending on the chosen design. In social 
sciences, there are two major types of experimental designs: within-subjects and 
between-subjects design. 

In the within-subjects experimental design, each participant (or subject) is 
exposed to all factors levels. In other words, all levels of the independent vari-
able are administered in a consecutive manner on the same group of participants. 
Because we do not need to assign subjects to different groups, this experimental 
design requires fewer participants. From a practical point of view, the design is 
preferred when participants have to fulfil specific conditions to be recruited for 
the experiment and generally, it is hard to find enough people who are willing to 
participate. 

In the between-subjects experimental design, the participants are divided into 
separate groups and each group is subjected to only one factor level. To describe 
the impact of the factor, the differences in the mean values   of the effect variable 
are observed.

The main types of within-subjects and between-subjects designs are presented 
in Table 1. The experimental groups are indicated by an ‘E’, a factor is indicated 
with an ‘X’ (but not its levels), observations are indicated by an ‘O’, and control 
groups are indicated with a ‘C’. In the between-subjects design, the indication ‘A’ 
represents the sample that is divided into equivalent groups prior to experimental 
treatment.1

1 The sequence of letters in each row represents the order in which particular actions are taken. 
For example, in the first design (pretest / posttest), there is only one experimental group –E1. The 
dependent variable is measured before the group is exposed to the treatment (O1). Then, treatment 
X takes place, and the dependent variable is measured once more (O2). Parallel rows represent inde-
pendent, parallel testing of another experimental group.
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Table 1. Types of within-subjects and between-subjects designs

Experimental design Type
Pretest / Posttest (1) E1 O1 X O2

Within-subjects

Pretest / Posttest with control group (2) E1 O1 X O2

C1 O3 O4

Pretest / Posttest: four-group design (3)

E1 O1 X O2

C1 O3 O4

E2 X O5

C2 O6

Between-subjects Posttest with control group (4) А X O1

А O2

Source: (Campbell, 1957; Dimitrov & Rumrill, 2003).

The simplest type of within-subjects design is the pretest / posttest with a control 
group. The experimental group is observed at least twice: prior to and after testing. 
The number of observations increases with the number of factor levels that are to 
be tested. Then the mean values of the dependent variable at each observation are 
compared for significant differences. Because different external factors that are 
outside the researcher’s control can cause the dependent variable’s mean to change 
between the observations (such as history or maturation), a control group is also 
included in the experiment. Measuring the dependent variable in the control group 
in parallel to the experimental group, but without applying any treatment, can help 
determine whether the observed effect can be attributed to the applied treatment 
or other external factors are contributing. 

The pretest / posttest: four-group design, also known as the Solomon four group 
design, is somehow an extension of the previous design. It includes two more 
groups—one experimental and one control group, tested in parallel. Only the post-
test is performed in the second experimental group. By omitting the pre-test, the 
researcher aims to avoid some threats to internal validity—performing the same 
testing twice can lead to the occurrence of the testing effect. The same logic applies 
to the second control group, which is only tested once. 

The between-subjects design aims to overcome the weaknesses of the described 
designs by dividing the participants into different groups that are exposed to only 
one treatment. There is no pretest in this type of experimental design, thus, there 
is no threat to the internal validity because of the testing effect. Each experimental 
group is exposed to different conditions and this is why participants’ behaviour 
cannot be influenced by more than one combination of factor levels.

Considerations when choosing an experimental design

True experimental designs are associated with different degrees of external factor 
control, leading to the occurrence of systematic error, and with a different statisti-
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cal power of the tests used. The researcher must decide whether to accept a certain 
decrease of internal validity at the expense of increasing statistical power, or vice 
versa; what possible measures can be taken to address the limitations of the pre-
ferred experimental design. Comparing the within-subjects and between-subjects 
experimental designs can be done within two aspects: the potential to provide 
internal validity and statistical power.

Statistical power of tests

The interference theory poses that the null hypothesis expresses the lack of differ-
ence or effect in the observed means (Sawyer & Ball, 1981, p. 275). In most cases, 
the researcher seeks to reject the null hypothesis in order to accept that there is 
a significant effect of tested factor levels. Statistical power expresses the probability 
that the applied statistical test will lead to correct rejection of the null hypothesis2, 
therefore, the higher the power of the test, the greater the probability that the 
conclusion made about the existence of a causal relationship is correct. Statistical 
power is a function of the test’s significance level, the sample size and effect size, 
thus increasing the sample will increase the statistical power when fixing the other 
two components (Chase & Chase, 1976, p. 234).

Determining the desired statistical power level before conducting the experi-
ment is important both for the correct definition of the required sample size and 
for assessing the appropriateness of the study as a whole.3 However, choosing an ad-
equate power level can be difficult when the estimated size of the effect is unknown. 
The empirical level of significance should not be used as a measure of the effect size, 
since both the statistical significance for a particular level of α and the size of the 
effect are a function of the sample size: even small effects will almost certainly be 
significant in large samples, while large effects may not be considered significant if 
the sample is small (Sawyer & Ball, 1981, p. 281). Overcoming the problem of the 
lack of a preliminary idea of   the effect size can be done by conducting a pilot study.

The link between statistical power and the significance level of the test presup-
poses its relatively lower values when applying conservative tests.4 Because the 
between-subjects design is generally more conservative (Charness, Gneezy, & Imas, 
2012, p. 2), it is characterised by lower statistical power. Its conservatism stems from 
the need to apply post hoc contrast tests, some of which are particularly conserva-
tive when it comes to comparing more than three pairs of groups (Privitera, 2015, 

2 Statistical power is equal to 1 – β, where β is the probability of failure to reject the null hypothesis 
when it should be rejectеd.

3 For example, a limited budget may force the researcher to change the research design in order 
to achieve a satisfactory level of statistical power when a relatively small effect is of interest and it is 
necessary to experiment with a larger sample (which will be more costly).

4 A statistical test is conservative when the α level is reduced and as a result, the level of β increases.
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p. 374), although the researcher may choose to apply a more liberal test. Dividing 
participants into separate groups, which should be treated with different factor 
levels, results in a smaller number of subjects in each group, compared to the within-
subject design where all participants are in one group. Repeated measurements in 
the within-subjects design provide more observations from one subject. This allows 
the researcher to work with a larger sample size and therefore, the statistical power 
of the tests is higher. Achieving an acceptable level of statistical power in between-
subject experiments may require up to four times more subjects than in within-
subject design experiments when the number of experimental sessions is small 
(Bellemare, Bissonnette, & Kröger, 2014, p. 3). This problem becomes more serious 
with the inclusion of additional factors or factor levels because if the researcher is 
unable to recruit more participants, this can lead to forming more groups of even 
smaller size. In such cases, only the recruitment of additional participants could 
increase the statistical power of the between-subjects experiment.

1.4.2. Different types of experimental designs

The choice of an appropriate experimental design is essential to precisely explore 
the aim of research. The previous part of this chapter focuses mainly on true ex-
perimental designs. However, different categories of experimental designs can be 
distinguished as well. 

In true experimental designs, the researcher employs randomisation in order 
to assign participants to groups. On the other hand, the main characteristic of pre-
experimental design is the lack of randomisation. Here, the most simple design is 
a one-shot case study which involves only a single measurement after the treatment 
applied to one group (Malhotra et al., 2017). Sometimes, while conducting experi-
ments, the researcher is unable to control when the procedure is applied and how the 
participants are assigned to groups. Such a category of experimental designs is called 
quasi-experimental. Measurements are made at various time intervals—some of them 
are taken before the treatment and some after. This design can be helpful for practical 
reasons, particularly when the researcher wants to observe the effects over a long 
time period (Field & Hole, 2013). There can be a simple time series with one group 
and a multiple time series with another group that plays the role of a control group. 

Occasionally, the researcher seeks to examine the influence of more than one 
independent variable. The research design may also intend to control the nuisance 
factors. A more advanced experimental design that enables the researcher to exert 
control over an extraneous variable is the randomised block design. In this design, 
the blocking technique is applied, which depends on dividing the participants 
into the groups on the basis of a similar variable level. This type of experiment 
is used when the external factor that may influence the performance has been 
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identified and may be controlled. For instance, a company introduces a new line of 
environmentally-friendly cosmetic products. The company aims to popularise the 
product by organising public campaigns. After creating three public campaigns (E, 
F, G) that differ from each other with regard to the content of information about 
the product, the company aims to examine their effectiveness. At the same time, 
the managers assume that the reception of the campaign may vary depending on 
the usage of similar products before the experiment. Therefore, the information 
about using a similar product in the past is considered as a blocking variable. Par-
ticipants are classified into groups based on the assumption that they have often, 
rarely or never before used other environmentally-friendly cosmetic products in 
the past. The random assignment occurs at two stages—in selecting participants for 
the experiment and in assigning them to the types of public campaign (treatment 
groups). This design is presented in Table 2.

Table 2. Random block design—example

Number of 
block group

Using 
environmentally-
friendly cosmetic 
products before

Type of public campaign

High amount of 
information (H)

Medium amount of 
information (M)

Low amount of 
information (L)

1 Often H M L
2 Rarely H M L
3 Never H M L

Source: Own elaboration.

A different kind of experimental design in which the blocking technique also 
finds its application is the Latin-square design. This kind of practice allows the 
researcher to control two external factors. Again, blocking intends to reduce the 
additional source of variability. The main rule is that for both variables, the numbers 
of levels are the same—the scheme of experimental design that is presented in the 
table has the same number of rows and columns (Montgomery, 2001). 

1.5. Conducting experiments

1.5.1. Internal and external validity

The results of a properly planned and conducted experiment should be valid. In 
general, the concept of validity is about the “extent to which the conclusions drawn 
from the experiment are true” (Hair et al., 2003). Specifically, this refers to two 
aspects—the certainty that the effect on the dependent variable is due to the in-
dependent variable and that the results may be applied to a larger population of 
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interest in a real-world context (Burns et al., 2017; Malhotra et al., 2017). Two 
forms of validity can be distinguished—that is, internal and external validity. In-
ternal validity concerns the accuracy of the experiment. It is the “extent to which 
the results of the experiment are attributed to the manipulation of the independent 
variable” (Jackson, 2008; Malhotra et al., 2017). In other words, the researcher needs 
to be sure that in the study, the causal relationships that may be explained by the 
experimental treatment (and not by other reasons) are accurately examined (Hair 
et al., 2003). Thus, if high internal validity of the experiment is to be ensured, there 
should not be any confounds, i.e. extraneous variables or flaws of the experiment 
that are not controlled by the researcher (Jackson, 2008). What this means is that 
controlling variables other than the treatment is an indispensable condition for 
internal validity (Malhotra et al., 2017). 

External validity, on the other hand, indicates whether the observed relation-
ships between independent and dependent variables can be generalised. This means 
whether the obtained results can be projected onto conditions beyond the experi-
mental situation and if they are true for the entire population to which the study 
applies (Hair et al., 2003; Malhotra et al., 2017). While planning the experiment, 
the researcher needs to be cautious and include all aspects that may be relevant in 
real-world settings in the experiment. The truth is, considering both internal and 
external validity in designing a study is a challenge for the researcher. In order to 
ensure a satisfactory level of these two forms of validity, the need to compromise 
may sometimes occur. The laboratory experiment can be conducted in the case of 
wanting to control the extraneous variables which increase the internal validity of 
the study. However, the laboratory conditions differ from the real ones, which may 
reduce the external validity (Malhotra et al., 2017). 

While planning and conducting experiments, the researcher may encounter 
several threats, both to internal and external validity. Enlisting those threats and 
errors may help in avoiding some of them. 

1.5.2. Experimental errors (threats to validity)

The following threats regarding the internal validity can be enumerated:
History effect: The history effect occurs when the specific event that is outside 

the experimental situation may violate the results. What should be noted is that 
this does not mean that the event occurred in the past, before the experiment. Con-
trarily, it applies to the factors taking place during the time of the study (Jackson, 
2008; Malhotra et al., 2017). 

Maturation effect: Another aspect that may limit experiment results is matura-
tion. In the case of the experiments that last over a period of time, the participants 
may naturally grow and develop (e.g. became older, more tired or interested). These 
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changes are not caused by a specific event but involve the participants and occur 
with the passage of time. If people change during the period of the study, the effect 
on the dependent variable may be caused by this instead of the independent vari-
able. How can we deal with the maturation effect? Implementing a control group 
in the study may help (Jackson, 2008; Malhotra et al., 2017).

Testing effect: Testing effect refers to the process of experimentation. In some 
studies, pre- and posttest measures are included, and some are conducted on a daily, 
weekly or monthly basis. These repeated measures may affect the experiment results 
in two ways—when the prior measure has impact the later one (the main testing 
effect) or when the prior measure changes the participant’s reaction towards the 
independent variable (the interactive testing effect). Being tested numerous times 
itself may well influence the dependent variable, decreasing internal validity. Here, 
such effects as the practice effect—when participants take some tests several times 
and learn how to perform it better—can also be mentioned. Also, the fatigue effect 
may occurs when participants become tired of repeating the same procedure and 
then get lower scores (Jackson, 2008; Malhotra et al., 2017).

Regression: This effect means that in the course of the study, the extreme scores 
tend to move closer to the mean. It happens when participants are initially chosen 
on the basis of their extreme scores and then, with several more tests, their scores 
regress to the average values. It may also distort the internal validity because the 
observed change may be caused by the changes in scores instead of the independ-
ent variable.

Instrumentation: Another threat to internal validity is directly related to the 
measuring instrument, observation techniques and measurement processes (Hair 
et al., 2003). The measurement sometimes takes place through observation and the 
observers may become tired, bored or may lose their focus during the experiment. 
This also happens because of the lower accuracy of scorers or due to changes in 
administration procedures (Hair et al., 2003; Jackson, 2008). This threat occurs 
especially when there is a pretest and posttest study (Malhotra et al., 2017).

Selection bias: The threat to internal validity that depends on inappropriate 
selection or assignment of the participants to treatment groups is called selection 
bias (Hair et al., 2003). In this case, the changes in the dependent variable would be 
impossible to compare because the group may differ initially. This happens when 
the researchers select participants on the basis of their subjective judgement or 
when they let the participants assign themselves to groups on their own (Malhotra 
et al., 2017). 

Mortality (attrition): In the case of experiments with experimental and control 
groups, there is a risk that along with the course of the study, the number of par-
ticipants will change. As a result, this inequality between both groups may lead 
to distortion of internal validity. The differences in the group sizes occur due to 
many reasons—sometimes people just refuse to take part in the experiment. Thus, 
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it may not be known whether those who participate in the study would react to the 
treatment in the similar way to those who resigned from participation (Jackson, 
2008; Malhotra et al., 2017). 

Diffusion of treatment: Another effect that is particularly risky in maintain-
ing internal validity of the experiment is diffusion of treatment. This matches the 
relationships between the participants of the study who may react differently to 
the treatment because of the information which they exchange. It may sometimes 
occur when students are taking part in the experiment. They may know each other 
and discuss the study during its course or talk about it with the students who have 
not yet participated in the study. Sharing information about the experiment may 
influence the reaction to treatment. The researcher should ask the participants not 
to communicate during the study. The threat may be limited by conducting each 
part of the experiment in the shortest time possible (Jackson, 2008).

Experimenter effect: The results of the experiment may well be violated by the 
experimenter. The experimenter is responsible for designing the study and puts a lot 
of time and effort into this process. Occasionally, the researcher may unintentionally 
encourage participants to react in a way desired for the purpose of the study. This 
may be done by body language or mimics. The possible solution could be using 
the method of blinding, in which the researcher interacting with the participants 
does not know the details of the treatment (Jackson, 2008). 

There are several threats also connected with external validity. The risk of limiting 
the possibility of result generalisation may be violated by involving mostly student 
participants in the study. This is a common practice due to accessibility, low cost and 
time. However, the researcher should be careful with including students mostly in 
the experiment as they sometimes may not be representative of the target popula-
tion (Zikmund et al., 2010). The selection may also be crucial in different aspects. 
For example, if the study demands a lot of time, the participants who are involved 
are only those who have the motivation and time to take part in it, which also, may 
not be a good reference to the whole population. Apart of the inaccurate selection 
of participants who cannot be applied to the whole population, another issue with 
generalisation refers to the setting of the experiment. This involves conducing labo-
ratory experiments in which there is a risk that the participants’ reactions to the 
treatment may differ compared to those present in the natural environment. Some 
other aspects that may affect the external validity are timing of the study or exposure 
to pre-measurements, which can change the participant’s reaction to the treatment. 

Limitations of validity in between-subject and within-subject 
designs

It can be pointed out that in experimental studies, the external validity is unattain-
able for the whole population, but for its subgroups, it is formed on the basis of the 
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characteristics of the participating subjects. While controlling the adverse effects 
of external factors ensures internal validity, it could be an obstacle in achieving 
external validity for laboratory experiments, as conditions may deviate too much 
from the actual environment of the studied phenomena.

In within-subjects experiments, at least two observations are performed—one 
before and one after the treatment. Due to the fact that the group should be sub-
jected to all levels of treatment, increasing the number of factors and/or their levels 
leads to multiple testing. This allows the comparison of each subject to him/herself 
from before and after the treatment, but it opens space to some unwanted variation 
caused by re-testing. In the time period between two observations, various side 
events may occur, or systematic effects may appear (such as fatigue, distraction, 
anxiety, boredom). Each subsequent test may result in increased experience of the 
subjects with the experimental procedure. However, some balancing techniques 
can be used to deal with these effects. Adding an untreated control group to the 
design allows generalisation of the results to any other equivalent and pretested 
group (Campbell, 1957, p. 302). It is assumed that the impact of external factors 
on the experimental and control groups is relatively the same. 

Between-subjects experiments do not suffer from the shortcomings described 
above, as the observed values of the effect variable in at least two experimental 
groups are compared, and each group is tested only once. It is assumed that any dif-
ferences in the group means of the dependent variable would be due to the different 
level of treatment in each group. However, when conducting a between-subjects 
experiment, reasonable doubts may arise as to whether the observed differences are 
caused by different personal characteristics of the subjects in the groups. Application 
of a randomisation technique and ensuring equivalence of the groups is mandatory 
to eliminate the possibility that differences in participants’ characteristics are the 
reason for the observed difference.

In this section, the aspects that may help the experimenter to control for ex-
traneous variables and enhance validity of experiments are presented. Among the 
crucial aspects, the role of randomisation should be distinguished. Randomisation 
is the procedure of assigning participants to groups randomly, which helps ensure 
that the groups are equal and comparable (Hair et al., 2003). Participants chosen 
for the study should also be randomly selected for the experimental and control 
groups. Thanks to this technique, the researcher may assume that the confounding 
factors will be displayed in the whole group equally. For this to be ensured, the 
sample should be reasonably large. Sometimes, for the purposes of the study, the 
researcher may need to select participants with certain characteristics. This pro-
cedure—known as matching—is then a step prior to group assignment (Malhotra 
et al., 2017). The advisable practice, if possible, is also including a control group in 
the experimental design, which may help deal with the maturation, history, testing 
or instrumentation effects (Jackson, 2008).
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1.5.3. Ethics in experimentation

When conducting experiments involving people, the researchers need to take care 
of the participants’ well-being and morals during the study. In many studies, espe-
cially those demanding active participation, informed consent is indispensable. The 
participants need to know in what activity they will be involved. The participants 
should be assured that the confidential information obtained during the experiment 
is not to be disclosed. What should also be worth noting is that the question of 
confidentiality is crucial, not only for the participants, but also for the companies 
that are commissioning or sponsoring the research. 

The role of researcher is to precisely explain all procedures to the participants. 
They should be informed about the extent to which they will be involved. Every 
participant has the right to leave or resign from the experiment at any time.

For some participants, taking part in an experiment may be a totally new situ-
ation, thus, they feel stressed. A helpful practice in dealing with this is called de-
briefing—this consists in informing the participants about the main objectives of 
the experiment and its hypotheses. This also creates the chance for participants to 
ask any questions they may have. 
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Abstract: Eye movements provide information on subconscious reactions in response to stimuli and 
are a reflection of attention and focus. With regard to visual activity, four types of eye movements—
fixations, saccades, smooth pursuits and blinks—can be distinguished. Fixations—the number and 
distribution, total fixation time or average fixation duration are among the most common measures. 
The capabilities of this research method also allow the determination of scanpaths that track gaze on 
the image as well as heat- and focus maps, which visually represent points of gaze focus. A key concept 
in eye-tracking that allows for more in-depth analysis is areas of interest (AOI)—measures can then 
be taken for selected parts of the visual stimulus. On the other hand, the area of gaze outside the 
scope of analysis is called white space. The software allows for comparisons of static and non-static 
stimuli and provides a choice of template, dataset, metrics or data format.

In conducting eye-tracking research, proper calibration is crucial, which means that the partici-
pant’s gaze should be adjusted to the internal model of the eye-tracking software. In addition, attention 
should be paid to such aspects as time and spatial control. The exposure time for each participant 
should be identical. The testing space should be well-lit and at a comfortable temperature.
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1.1. Eye-tracking—what it is and how it works

Neuromarketing methods may help obtain a deeper understanding of consumer cog-
nitive processes such as attention and perception. This, of course, enables marketing 
activities to be addressed in the most efficient manner possible. The subconscious 
responses to stimuli can be measured using neuromarketing techniques, providing 
insight into decision-making processes, customer preferences and motivations. One 
of the most widely used methods of this type is eye-tracking. In recent years, there 
has been a notable rise in the popularity of using this technique because it offers 
useful knowledge on how stimuli are processed visually. The need to learn more 
about the relationship between the brain and the visual system prompted the need 
to monitor eye movements (Białowąs & Szyszka, 2019; Schall & Bergstrom, 2014).

The eye-tracking system, which tracks the movement of the subject’s eyeballs, 
allows for a thorough examination of the subject’s vision direction, as well as the 
path of attention. As a result, it is possible to isolate the focus areas of the partici-
pant’s vision, providing an overview of what the subject finds interesting or what 
has drawn attention. Thanks to this type of information, the researcher may ex-
amine how an individual perceives the viewed content (Białowąs & Szyszka, 2019; 
Duchowski, 2007).

The subject of scientific inquiry has long been how the brain responds to stimuli. 
Eye-tracking allows to learn more about how the human visual system functions 
and how the mind works while being exposed to visual content (Schall & Berg-
strom, 2014). According to some theories, both attention and eye movements are 
mediated by the same neural pathways. This means that shifts in attention rely on 
the stimulation of brain structures involved in eye movement (Hoffman & Subra-
maniam, 1995).

Eye-tracking is a set of research techniques and methods used to measure, 
analyse and interpret data on:
• the position and movement of eyeballs (Rojna, 2003);
• where the subject’s eyesight falls at a given moment;
• how long the eyesight focuses on a particular point;
• what path it follows (Schall & Bergstrom, 2014);
• pupil size (Bojko, 2013). 

Louis E. Javal recorded eye movements using an apparatus mounted on the 
patient’s eye surface in one of the first experiments regarding this field of the 19th 
century (Wawer & Pakuła, 2012). Eye-tracking has been used in a variety of areas 
of research, including psychology, medicine, ergonomics and marketing research 
as well (Białowąs & Szyszka, 2019; Wąsikowska, 2016). 

The visual activity consists of four event types:
• fixations—brief pauses in the movement of the eye when the retina stabilizes 

at a particular point in the field of vision. It means that fixations occur when 
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the gaze is maintained on a single location. Fixations (visual intake) range in 
length from 150 to 600 ms (account for 90% of the looking time). They involve 
the tiniest eye movements such as tremor, drift or microsaccades. As part of 
visual activity, fixation is a measure of location which reflects the position of the 
eyes captured in a given time. However, even though the fixation is registered, 
it does not imply that the subject processed the picture (Duchowski, 2007; 
Schall & Bergstrom, 2014);

• saccades—rapid eye movements that occur between fixations when the sight 
shifts from one location to another. Saccades are thought to be an effect of an 
intention to voluntary change in attention. The duration of saccades is from 10 
to 100 ms. Saccades occur when an individual searches different parts of the 
visual field in a sequential manner. They are not in the main focus of attention 
research because the visual information is not processed;

• smooth pursuits—movements that allow to track moving objects (Duchowski, 
2007);

• blinks.

1.2. What can be examined using eye-tracking

For fixations and saccades, a variety of indicators can be measured. 
Fixation measurement indicators include:

• the number and distribution of fixations (which could represent the individual’s 
engagement with the stimuli);

• total fixation time in a specific area and the fixation time per unit area of the 
visual object (Bylinskii & Borkin, 2015);

• first fixation duration and time to the first fixation (which help determine how 
long it takes the consumer to recognise a specific element);

• average fixation duration (calculated as the total time divided by the number 
of fixations);

• revisits—they are observed when the gaze returns to the location where the 
fixation previously occurred (Garczarek-Bąk & Disterheft, 2018; Tullis & Al-
bert, 2013);

• diversity of fixations—the number of points for which the fixation was observed;
• inter-element fixations—the number of instances when fixations are attributed 

to various elements (Bylinskii & Borkin, 2015);
• dwell time—the total time of all fixations and saccades (Garczarek-Bąk & Dis-

terheft, 2018). 
Saccade measurement indicators include:

• number of saccades;
• saccade duration. 
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Furthermore, there are measurements of both fixation and saccades as well as 
some combinations of these eye movements, such as scanpath and heat map.

The order of guiding sight for each space is reflected in the scanpath. Also, it 
aids the identification of places where the focus is diverted away from the mes-
sage’s vital material during the study. Circles reflect specific points that the subject 
looks at, with numbers showing the order of perception and lines representing the 
movement of sight from one point to the next. The following are some of the most 
commonly used measurements based on the scanpath:
• scanpath length; 
• spatial density;
• transition matrix; 
• scanpath regularity;
• scanpath direction (Borys & Plechawska-Wójcik, 2017).

The heat map helps participants see which areas earned the most attention and 
which were missed. Warm colours are used to indicate areas of longer concentra-
tion, while cool-toned colours are used to indicate areas of shorter concentration. 
The items that the subject does not look at, on the other hand, are not coloured. 
The heat map may also be shown as inverted, displaying the areas of the presented 
content where the subject focused his or her gaze. Areas of interest, which provide 
details about the degree to which a given image drew the subject’s attention, are 
another way to view the effects of measuring eye movements (Garczarek-Bąk, 2016; 
Wąsikowska, 2016).

1.3. How eye-tracking research is prepared

Eye-tracker
An eye-tracker is a device that allows the researcher to get a precise representation 
and interpretation of how the eyes move. The corneal reflection method is used 
by most modern eye-trackers to track the location and movements of the eye. This 
method is based on the use of infrared light sources guided into the eye, accompa-
nied by high-resolution camera reflection. The camera captures an image that can 
be used. An eye-tracker is a tool that enables obtaining an accurate representation 
and understanding of eye motion. Most modern eye-trackers follow the position 
and movements of the eye using the corneal reflection method. The technique is 
based on the use of light sources (infrared) directed into the eye, followed by a re-
flection from a camera with high resolution. The image is used to locate the source 
of light reflection on the cornea, allowing the direction of the subject’s sight to be 
located (Garczarek-Bąk, 2016; Schall & Bergstrom, 2014). In the analysis of visual 
activity, while using the eye tracker, three main attributes can be distinguished, i.e. 
the location, duration and movement.
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Equipment
1. Smart Recorder—a SmartPhone (based on Samsung Galaxy Note 4) with 

iViewETG 2.1 Mobile software that is used to create and run experiments. 
2. Eye-Tracking Glasses—a mobile eye-tracking device which captures a par-

ticipant's eye movements. It uses two small cameras on the bottom rim of the 
glasses and infra-red filtering lenses. The device enables registration of the 
eye’s movements from different distances as well as outdoor (BeGaze Manual. 
Version 3.7, 2017). 
To start the gear, connect part 1 and 2, then power on the recorder. 

Figure 1. Eye-tracking equipment

Source: Own elaboration.

Participants
The number of participants included in the study depends on the method of 

data analysis. For the heat map, the desired number of participants is 39. In qualita-
tive research, it is enough to have at least 6 participants (Pernice & Nielsen, 2009).

The sample should be large enough to maximise the statistical power of analysis 
and not include too many participants due to study tractability (Duchowski, 2017). 

When recruiting people for an eye-tracking study, general information needs 
to be gathered about the eyes and sight. We should know whether the participant 
is wearing contact lenses or eyeglasses and/or has any issues with the eyes (e.g. 
cataracts). The sample should include the participants of the target audience. For 

1

2
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instance, selecting only students for the study may not enable generalisation of the 
results (Duchowski, 2017).

Before proceeding with the study, participants should be warned that it will 
take place using technology that tracks eye movements—but the researcher must 
be careful not to reveal too many details about the procedure, as this may have 
a negative effect on the obtained results (Pernice & Nielsen, 2009).

1.4. Visual activity testing rules

Conducting the experiment 
When carrying out a test using an eye tracker, it is worth remembering a few funda-
mental principles that will ensure reliability of the obtained results. It must be borne in 
mind that the exposure time needs to be controlled for each participant—it should be 
made equal for all the subjects. Furthermore, when controlling the exposure duration 
is not possible, the solution may be to express the dwell time in percentages instead of 
absolute values—depending on its duration, other eye movements and other amounts 
of time spent on watching each element are observed. Time control should only take 
place when the participant is involved in the study—the time that the respondent 
spends reporting his/her experience should not be recorded. During the test, the sub-
jects’ eye movements should be monitored in real-time, and they should be observed 
for correct posture. The use of a trigger—the point on which the participants focus 
their attention at the beginning of the experiment—should be considered. This allows 
control of the place from which all subjects begin the experiment (Tullis & Albert, 2013).

Space
It is worth remembering that the results obtained through registering eye move-
ments depend on the environment in which the test is performed. When planning 
an experiment related to tracking the subjects’ eyesight, it is worth considering 
the context in which it is conducted. For example, instead of using an eye tracker 
in a store space, for reasons of cost and flexibility, researchers decide to use pro-
jectors to create a virtual environment. It is worth bearing in mind that the most 
realistic environment is a real, physical store—the results of the test may be dif-
ferent depending on whether the eye movement is measured in a natural or arti-
ficial environment. In the study by Tonkin, Ouzts and Duchowski (2011), it was 
proved that visual search is faster in a physical environment compared to virtual 
image—although the perceived difference may not be significant. In turn, if the 
test is carried out in laboratory conditions, proper lighting should be ensured in 
the room in which it takes place. It is not recommended to conduct the test in very 
bright rooms—too much light may affect the device for recording eye movements 
(Pernice & Nielsen, 2009). 
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1.5. Before the experiment (proper usage of the 
equipment, calibration, recording)

Proper usage of the equipment
The glasses should be properly set by adjusting the strip. The position of the glasses 
should be stable, and the participant is not allowed to change the position of the 
glasses during the experiment. After turning on the device, the range of the par-
ticipant’s view and the dot showing where the participant is looking at can be seen. 

The proper positioning of the glasses is indicated by a green dot on the screen 
of the recorder (1). If the colour of the dot is not green (yellow or red), the position 
of the glasses has to be adjusted. 

Figure 2. Positioning of the glasses

Source: Own elaboration.

After turning the device on, in the panel on the right, click on the ‘NEW EX-
PERIMENT’ button.

After that, you will be asked to name your experiment. 
In the next step, a new participant can be added to the experiment. It should be 

ensured that the participant is added to the experiment. New experiments for new 
participants of the existing experiment are not to be created. Each new participant 
should be recorded separately (added as a new participant). 
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Figure 3. Creating a new experiment on the device

Source: Own elaboration.

Figure 4. Naming the experiment

Source: Own elaboration.

Figure 5. Adding a new participant—part 1

Source: Own elaboration.
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Figure 6. Adding a new participant—part 2

Source: Own elaboration.

Calibration
Calibration enables adjustment of the participant’s gaze to the internal model of 
the eye-tracking software. It is a crucial step in conducting eye-tracking analysis 
because it helps in precisely tracking the movement of participant’s eyes during 
the experiment (BeGaze Manual. Version 3.7, 2017).

In order to calibrate, the CALIBRATE icon on the right panel is to be selected. 
Before the calibration, the calibration type needs to be chosen (for 1 or 3 points). In 
this case, calibration will be presented with one point (landmark) that is marked as X.

Calibration should be arranged in the environment similar to real experimental 
conditions (position of the participant and distance from the object). It must be 
noted that the calibration should not be conducted with the visible scene of the 
planned experiment that could bias the experiment results. One or three landmarks 
(area that we can easily assess the gaze point) are required.

Figure 7. Calibration—step 1

Source: Own elaboration.
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On the right panel, the instructions for calibration can be seen. The participant 
should look at the landmark (X). While the participant confirms gazing at the 
landmark, even if the dot is not exactly in the place of the landmark, the researcher 
should tap the screen of the recorder, freezing the image.

Figure 8. Calibration—step 2

Source: Own elaboration.

If the green dot is not exactly on the landmark, the researcher should move the 
‘+’ cursor to the landmark, using the touch-screen of the recorder. 

Figure 9. Calibration—step 3

Source: Own elaboration.
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After positioning the ‘+’ cursor on the landmark, the researcher should click 
the ‘ACCEPT’ button. 

Figure 10. Calibration—step 4

Source: Own elaboration.

After calibration, it needs to be checked if the position of the dot shows exactly 
the point at which the participant is looking.

Recording
In order to prevent losing the proper settings, immediately after calibration, the exper-
iment should be conducted. The glasses may not be touched, moved or repositioned.

Figure 11. Recording

Source: Own elaboration.
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To start the experiment, you should click the ‘RED BUTTON’ on the right panel 
(circle-shaped button turns into squared-shaped button, which confirms recording).

It must be remembered to record the whole exposition to the stimulus (full 
time of the experiment). Recording can be started a few seconds before beginning 
the experiment. 

To end the recording, please click on the same ‘RED BUTTON’ (squared-shaped 
button turns into a circle-shaped button, which confirms the end of recording). 

Data transfer
After recording chosen participants, the data can be exported to the computer with 
the BeGaze software. Connect the device to the USB port of the computer. It will 
appear as a mobile device. You will find the experiment folder in: Card-SMI-A.

Copy the folder of your experiment and save it to the hard drive.
Creating a new experiment in the software
1. Open BeGaze software.
2. Path: File – New experiment from folder – Choose saved folder.

1.6. Data preparation  
(adding reference image, adjusting gaze points,  

adding areas of interests, dividing videos, groups)

Preparing experiment analysis
The whole analysis will be conducted on the reference view showing the full vis-
ible range of the experiment and allows to set the position of all the fixations. The 
reference view may be the screenshot from the recorded experiment or a separate 
image (as in the following example). 
1. Adding reference view and selecting fixations for the chosen stimulus.

(Path: Change mode – Semantic gaze maping – Confirming it as the default 
option).

2. Open ‘Semantic Gaze Mapping’ by clicking on the icon indicated by a red ar-
row. In order to add a reference view from the folder, click on the icon shown 
by a green arrow.

Figure 12. Semantic Gaze Mapping

Source: Own elaboration.
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The reference view will be displayed on the left panel. On the right panel, there 
is a recording of the chosen participant with all the fixations. The allocation of 
fixations should be conducted for each participant separately. In order to choose 
the participant, the ‘CHANGE STIMULUS’ button must be clicked.

The exact length of the experiment can be adjusted by right clicking on the film 
stripe and setting the starting and ending position of the chosen stimulus.

The first fixation is visible in the right window (displayed as a circle). Please, 
find and click corresponding position on the reference view. Then, the next fixation 
will appear in the right window. Please, allocate the fixation to the reference view 
and repeat the procedure until the final fixation. The allocations are automatically 
saved and the next participant can be chosen.

Figure 13. Detecting the fixations

Source: Own elaboration.

Creating AOI
The main analyses are conducted calculating the events within the areas of interest 
(AOI). Any number of AOI can be set, and results for the chosen areas may be ob-
tained. To set the AOI, the area of our interest can be drawn covering the selected 
object (e.g. one product, group of products, face, logo, part of logo).

In order to define the AOI for the selected object(s), please click on the ‘AOI 
Editor’ indicated by a red arrow.
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In the following example, the object is the upper shelf. Please note that on the 
following screen, AOI has been defined in the rectangle shape. In the AOI toolbar, 
there are other possible shapes such as those ellipsoidal or polygonal. We can cre-
ate more AOIs, e.g. the lowest shelf, group of products or even a single product. 

If the AOI needs to be deleted, please click on the ‘X’ in the toolbar (BeGaze 
Manual. Version 3.7, 2017).

Figure 14. Creating AOI

Source: Own elaboration.

1.7. Analysis using default charts

Bee Swarm shows gaze positions on the reference image (as circles) for selected 
participant(s) in a given moment. For example, 10 participants have been chosen 
and their gaze position at the moment of 1:12:771 was checked. Four circles, colour-
corresponding to the chosen participants, can be observed. The other six had no 
gaze positions recorded at that moment. 
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Figure 15. Bee Swarm

Source: Own elaboration.

Scan path shows gaze tracking on the reference image (circles connected by lines) 
for the selected participant(s). In this example, the scan path for one participant 
can be seen (matching the colours is the same as in Bee Swarm). 

Figure 16. Scan path

Source: Own elaboration.
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Heat map allows us to visualise the attention level (number of fixations) of cho-
sen participant(s) by using corresponding colours. From green (lower attention), 
through yellow (medium attention) to red (higher attention).

Figure 17. Heat map

Source: Own elaboration.

The focus map is somehow an inversed heat map. It allows to visualise the level 
of attention by showing the places receiving more fixations.

Figure 18. Focus map

Source: Own elaboration.
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Key Performance Indicators display the set of the indicators for each AOI of 
the chosen participant(s). The area that is not covered by the AOI is called White 
Space, and all the events outside the AOI are summarised in White Space. 

Figure 19. Key Performance Indicators

Source: Own elaboration.

Gridded AOI are default ones proposed by the software as regular squares in 
the reference image. The Gridded AOI gaze patterns and parameters are visualised 
by altering the colour of a square based on the level of received attention. 

Figure 20. Gridded AOI

Source: Own elaboration.
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The AOI Sequence Chart shows the temporal order in which AOI were hit by 
chosen participant(s). In this example, participant 409B focused gaze for the first 
12 000 ms on the red AOI, then onto the blue AOI, and shifted gaze to the orange 
AOI (for about 5 000 ms), etc.

Figure 21. AOI Sequence Chart

Source: Own elaboration.

The Binning Chart shows percentages of AOI dwell time in every time unit.
A value of 100% means that for the whole time of the time bin, for all selected 

trials, one more AOI was always hit. The time unit of the bins can be adjusted using 
the ‘Bins integration time [ms]’ option. In this example, participant 409B in the 
first second focused gaze for 14% of the time on the blue AOI, for 65% on the red 
AOI and for 21%, beyond the drawn AOI (White Space).

Figure 22. Binning Chart

Source: Own elaboration.
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The Line Graph shows a variety of indicators.
In the Line Graph main view, the following gaze data are visualised over the 

timeline:
• Gaze parameters: the Y-axis on the left displays the gaze position in the stimu-

lus (x- and y-direction) as well as angular velocity and acceleration of the eye.
• Pupil diameter: the Y-axis on the right displays the pupil diameter.
• Time [ms]: the X-axis at the bottom displays fixations, saccades, blinking and 

user events.
The exact measurements for a chosen time (shown as a red line on time axis) are 

displayed in the table below. In this example, the diameter increased approximately 
28 000 ms, which may indicate higher attention of the participant.

In the presented instance, the diameter of the right pupil with the correspond-
ing events were explored.

Figure 23. Line Graph

Source: Own elaboration.

1.8. Exporting data for advanced analysis

For more advance analysis, the gathered data regarding the experiment can be 
downloaded. There is a variety of export settings—template, dataset, metrics or 
data format can be chosen. It is demonstrated how to export a useful set of data, 
including the indicators for every fixation in each AOI. 
Path: Export – Metrics Export 
Select Template – AOI Statistics – Single (fixations only)
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Figure 24. Metrics Export

Source: Own elaboration.

Data are in a .txt format (see Figure 25). Then it can be read in other applica-
tions such as Excel or SPSS (Figure 26 and Figure 27).

Figure 25. Data in .txt format

Source: Own elaboration.



59  

Eye-tracking research

1.

Figure 26. Data in SPSS—part 1

Source: Own elaboration.

Figure 27. Data in SPSS—part 2

Source: Own elaboration.
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2.1. What is electrodermal activity and why consumers 
can be better understood by measuring it? 

The electrical activity of the skin is known as electrodermal activity (EDA). Its es-
sence lies in the electrical phenomena generated by the skin. The source of the skin’s 
electrodermal activity are the so-called eccrine sweat glands (Cacioppo, Tassinary, 
& Berntson, 2007), which are mainly responsible for the secretion of sweat (secre-
tory theory). Sweating is a source of conducting electricity.

The functioning of the eccrine sweat glands is regulated by the sympathetic nerv-
ous system that is part of the autonomic system (Zhai, Barreto, Chin, & Li, 2005). 
The centres of this system are located in the spinal cord and work on the basis of 
the reflex principle. This means that the increase or decrease in skin sweating (and 
thus the skin’s electrical conductivity or resistance) is automatic and subconscious, 
and therefore, it cannot be influenced by a human (Cacioppo et al., 2007).

The sweat glands are distributed across nearly the entire body surface area 
(covering practically the entire surface of the body), totalling an amount of ap-
proximately 2 million. However, they are particularly concentrated on the forehead, 
cheeks, hands and feet. Glands play a thermoregulatory role in the human body. 
Under normal conditions, the glands excrete about 500 ml of sweat from the body 
per day (Sosnowski & Zimmer, 1993).

Nonetheless, thermoregulation is not the only cause of the sweat glands’ work. 
Increased sweat excretion is also observed during the following situations (Boucsein, 
2012):
1) eating meals;
2) physical impact on the skin;
3) taking medication;
4) spontaneous reaction of the glands;
5) and emotional arousal.

The sweat glands are stimulated by eating mainly acidic, very salty and spicy 
meals. Sweat, the source of which is food, appears primarily on the forehead, the 
top of the cheeks and the tip of the nose. The amount of sweat produced in this way 
can be considerable and thus, clearly visible. A local increase in sweating is also 
observed in areas of physical impact on the skin, for example, due to acupuncture, 
high temperature or radiation. The work of the sweat glands can also be stimulated 
pharmacologically (Boucsein, 2012).

However, what is really important within the context of costumer research, 
is the activity of sweat glands caused by the body’s response to a specific type of 
stimuli coming from the environment. It is believed that the excretion of sweat, 
which is regulated by the nervous system acting independently of human will, is 
an indicator of the emotional arousal of a person as a result of specific stimuli. It 
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ranges from a low-level during sleep to a high level during strong activation. It is 
assumed that all emotions (both positive and negative) cause increased sweating. 
Hence, the electrodermal reaction can be used in diagnosing emotional arousal 
of consumers caused by, e.g. specific products, advertisements or elements of 
the in-store environment (Galvanic Skin Response, 2016). That is why this type of 
sweating is called ‘emotional sweating’. In other words, EDA can be used to examine 
implicit emotional responses that may occur without conscious awareness or are 
beyond cognitive intent (i.e., threat, anticipation, salience, novelty). 

Emotional sweating, in particular, involves the glands that are located on the 
hands and feet. Therefore, their function is not strictly thermoregulatory. This 
function is revealed only at high temperatures, exceeding 30 degrees Celsius. 
However, in normal room temperatures, and assuming undisturbed thermoregu-
latory functions of the body, a high correlation was found between the work 
of the sympathetic nervous system and the electrodermal reactions of the skin 
(Wallin, 1981). It is for this reason that that their functioning is believed to be 
more susceptible to psychological stimuli than tasks related to thermoregulation 
of the body (Edelberg, 1972). An important feature of electrodermal reactions 
in the context of emotional arousal is their high sensitivity to stimuli of very low 
intensity (Boucsein, 2012).

Nevertheless, on the basis of increased sweating alone, it cannot be inferred 
whether the emotions evoked by a given stimuli are negative or positive (Cacioppo 
et al., 2007). Therefore, it cannot be precisely indicated that these changes are the 
result of, for example, anger, joy or fear.

2.2. Types of electrodermal activity

The electrical activity of the skin is caused by two types of stimuli (see Figure 1): 
sustained and one-off. Sustained stimuli have a continuous effect on the body over 
a relatively long period of time. On the other hand, one-off stimuli have a relatively 
strong but very short-lasting effect. This type is defined as novel, unexpected, sig-
nificant or aversive (Cacioppo et al., 2007).

Sustained stimuli affect so-called tonic skin activity (Cacioppo et al., 2007, 
p. 171). Tonic activity represents relatively constant or slow changes in the electro-
dermal activity of the skin. This activity is known as SCL (skin conductance level). 
The so-called tonic activity also includes non-specific reactions (fluctuations), i.e. 
reactions occurring without the influence of a stimulus (Strelau, 2006). They are 
known as NS SCR (non-specific skin conductance response) (Cacioppo et al., 2007). 
It has been found that, for example, SCL is characterised by a gradual decrease in 
its level when a particular person is resting (i.e., not affected by stimuli and rela-
tively still) (Strelau, 2006). On the other hand, it has been found that the increase 
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in tonic electrodermal activity (SCL level and NS SCR frequency) is influenced by 
the performance of a specific task. Supporting studies were carried out by Lacey 
(Lacey, Kagan, Lacey, & Moss, 1963). As part of them, participants were asked to 
perform a variety of tasks, ranging from listening to irregular, loud sounds to solv-
ing arithmetic tasks. In the case of preparation by the participants for each task, an 
increase in the level of SCL in relation to the level at rest was noted. On the other 
hand, the performance of tasks led to a further increase in tonic level (Cacioppo 
et al., 2007, pp. 171–172).

Figure. 1. Types of electrodermal activity

Source: Author’s own elaboration based on (Benedek & Kaernbrach, 2010).

The electrical activity of the skin can also be phased. Phase activity reflects 
a sudden response to a short-term but intense stimuli through a jump in sweating. 
This activity is known as SCR (skin conductance response) (Cacioppo et al., 2007).

Phase electrodermal activity is a manifestation of both the orientation reflex 
and its habituation. The orientation response is defined as the body’s response 
to a stimulus. The function of this reaction is to facilitate the reception of the 
stimulus while stopping other activities that may hinder the perception of the 
stimulus. The orientation reflex manifests itself simultaneously in several areas. The 
first of them are changes in external behaviour, manifested by stopping the tasks 
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being performed, directing the whole body, and thus the sense organs towards the 
stimulus. The second area of   change in physiological systems occur, for example, 
by increased skin sweating, slowing of heart rate, dilation of blood vessels in the 
head, pupil dilation, etc. The orientation response is reduced until complete disap-
pearance (habituation) in the event of repeated specific stimulus.

Concluding, it should be stated that tonic activity reflecting slow electrodermal 
changes is caused by stimuli of sustained nature. On the other hand, phase activ-
ity is a relatively violent electrodermal reaction to a relatively short-term intense 
stimulus.

2.3. Measurement of electrodermal activity

What is actually measured?
Generally speaking, measurement of electrodermal activity is considered a biom-
etric measurement. Biometrics is a universal term representing measurements of 
the body’s physiological responses—not of the brain directly—to external stimuli 
that are felt through the senses (Pradeep, 2010; Berčík & Rybanská, 2017). 

It is worth noting that emotional arousal can be detected in two ways. First, via 
electrical conductivity of the skin. The higher it is, the greater the sweat secretion 
and the greater emotional arousal. The second way is based on inverse electrical 
conductivity, i.e. electrical resistance. In this case, the lower the resistance, the 
greater the sweat secretion and emotional arousal (Białowąs & Szyszka, 2019).

Furthermore:
1) an increase in skin electrical conductivity means—a decrease in electrical resist-

ance of the skin = emotional arousal;
2) a decrease in skin electrical conductivity means—an, increase in electrical 

resistance = lack of emotional arousal.
Both conductance and resistance are expressed in specific units. Thus, conduct-

ance is expressed in simens, or more often in microsiemens (mS), while resist-
ance—in ohms (more often in kilohms) (Strelau, 2006).

Below, a description of skin conductance measurement is given. 
It should be taken into account that the phase and tonic electrodermal reaction 

(described in the previous chapter)—manifested by an increase in skin conductiv-
ity—are measured differently.

Measuring the phase electordermal reaction to a stimulus (and thus, emotional 
arousal), two groups of parameters are considered: parameters characterising the 
size (amplitude) and duration of the reaction. The first group includes the amplitude 
of the reaction. That is the level to which the level of EDA has increased as a result 
of the influence of a specific stimulus. The second group of time parameters include 
(Sosnowski & Zimmer, 1993, Cacioppo et al., 2007):
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1) latency time, that is, the period from the stimulus onset to the electrodermal 
response; there is usually a 1-4-second so called ‘latency window’, hence, any 
SCR that begins between 1 and 4 s, following stimulus onset, is considered to 
be elicited by that stimulus;

2) rise time, that is the temporal interval between SCR initiation and SCR peak; 
3) recovery time, that is the temporal interval between SCR peak and point of 

complete SCR amplitude recovery.
As the recovery time is relatively extended over time and thus, there is a risk 

that the electordermal activity of the skin may not return to the baseline level 
before the onset of the next stimulus, therefore, in the research, a substitute 
parameter is widely used—half recovery time, temporal interval between SCR 
peak and point of 50% SCR amplitude recovery (Sosnowski & Zimmer, 1993, 
Cacioppo et al., 2007).

The analysed parameters are graphically presented in Figure 2.

Figure 2. Parameters of phase electrodermal reaction

Source: (Cacioppo et al., 2007, pp. 165–166; Jaśkowski, 2004).

The parameters of the phase electordermal activity indicate certain regularities 
(Boucsein, 2012):
1) the more important a given stimulus is for a given person, the greater the am-

plitude of the reaction and the longer its recovery time;
2) the higher amplitude of the phase electrodermal reaction, the stronger emo-

tional arousal is;
3) the longer recovery time a phase reaction is, the more increased the attention 

to a specific task.
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In addition to measurement of the phase electrodermal response caused by 
the short-term stimuli, it is also possible to measure the response caused by the 
sustained stimuli (lasting over a long period of time). In this case, the change in 
tonic level (SCL) requires measurement. The change in tonic level is defined as the 
difference in its level between at least two points in time.

The measures of the tonic and phase electrodermal activity have specific, typical 
values (Table 1). It should be noted, however, that the electordermal reaction is very 
individual. It depends, inter alia, on: age, sex, race or the characteristic properties 
of the skin regarding the person under study (Cacioppo et al., 2007).

Table 1. Electrodermal measures, definitions and typical values

Measure Definition Typical values 
Skin conductance level (SCL) Tonic level of skin electrical conductivity 2–20 microSiemens
Change in SCL Gradual changes in SCL measured at two 

or more points in time
1–3 microSiemens

Frequency of NS-SCRs Number of SCRs in absence of identifiable 
eliciting stimulus

1–3 per minute

SCR amplitude Phasic increase in conductance shortly fol-
lowing stimulus onset

0,1–1 microSiemens

SCR latency Temporal interval between stimulus onset 
and SCR initiation

1–3 seconds

SCR rise time SCR rise time 1–3 seconds
SCR half recovery time Temporal interval between SCR peak and 

point of 50% SCR amplitude recovery
2–10 seconds

Source: (Cacioppo et al., 2007, p. 165). 

Where is electordermal activity measured?
Electrodermal activity is measured on the skin surface (Strelau, 2006). Due to 
the fact that the highest sweat gland densities are on the hands and feet, these 
parts of the body are the main place for physiological measurements. However, 
the clear advantage of the hand in this respect is a consequence of the much 
easier usage of the measuring equipment. There is no clear suggestion in the 
literature as to on which hand the skin’s electrical activity should be measured. 
The most often, the non-dominant hand is used for practical reasons. Nonethe-
less, the areas of the hand on which the measurement should be performed 
are relatively, precisely defined. These are the distal phalanges and the middle 
phalanges on the index and middle fingers, as well as the ball of the thumb and 
the little finger. Alternatively, the measurement can be carried out on the wrist. 
The measurement is taken by attaching electrodes to skin surface. The areas 
of the hand on which it is possible to measure electrodermal response (attach 
electrodes) are shown in Figure 3.
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Figure 3. Locations for recording electrodermal activity

Source: Training materials of the NuroDevice company.

When deciding on the places where electrodermal activity is recorded, the fol-
lowing conditions should be taken into account:
1) recording the electrodermal activity from the subject’s fingers gives a good 

signal (good data acquisition) but may prevent the subject from moving his/
her hand freely;

2) recording the electrodermal activity from the subject’s wrist makes it less dif-
ficult for the subject to move the hand, but gives a weaker signal (poorer data 
acquisition).

What equipment is used to measure electrodermal activity? 
Measurements of electrodermal activity is performed while a small current is 
flowing through the skin from an external source. Therefore, this measurement 
cannot be done without dedicated equipment. It requires the use of special elec-
trodes, electrode gels and recording devices. Its main element is the so-called 
biological signal acquisition station. The electrodes are connected to this station 
by a wire which, in turn, are attached (most often) to the hand of the participant 
under study. The obtained data is sent from the acquisition station to a computer, 
on which appropriate software is installed and allows for analysis. Such a set of ap-
paratus allows to conduct research during which the participants are not required 
to move around.

On the other hand, research conducted in natural conditions, requiring the 
movement of people (e.g. inside a store), requires a slightly different configuration 
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of the apparatus. In that case it is impossible to connect the electrodes directly 
to a small device that is attached to the subject’s forearm with a band. It records 
electordermal activity data. Then, this data is sent to the computer (see: Figure 4).

Figure 4. Example of the device used to detect electrodermal activity

Source: (Hernando-Gallego, Artés-Rodríguez, 2015).

The available equipment for analysis of electordermal activity is characterised by 
a relatively low cost (compared to other devices for physiological measurements) of 
purchase and operation. After the initial expense related to the acquisition of the 
measuring equipment itself, further use requires periodic purchases of appropriate 
consumables (gel or electrodes). Moreover, the EDA measurement is non-invasive 
and carries no risk to the health or life of the test subjects.

What needs to remembered when conducting electrodermal activity research?
The proper use of psychophysiological methods—including measurement of elec-
trodermal activity—requires the application of several fundamental principles 
(Białowąs & Szyszka, 2019). First of all, one needs to design an experiment in such 
a way that makes it possible do determine whether a given SCR is event-related 
(experiment related) or non-specific. If the criteria in the experiment are too loose, 
one risks including non-specific SCRs into the analysis for event-related SCRs, and 
erroneously, this could led to misleading results. On the other hand, strict criteria 
may end in missing many ER-SCRs to meet the adopted criteria by wrongly dis-
carding or misclassifying them as NS-SCRs (Braithwaite, Watson, Jones, & Rowe, 
2015). Apart from a proper experiment design, there is also a set of good practices 
that facilitate electrodermal activity testing. They are the following:
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1) the device should be put on the participant a few minutes before the test—this 
will improve the contact of the electrodes with the skin;

2) the respondent should be asked to perform an exercise, e.g. breathe in and out 
deeply (this will increase the EDA signal);

3) the right temperature should be set in the room—optimally, 22–24°C;
4) the number of artifacts related to movement should be reduced;
5) the presence of physiological activities of the body should be noted (coughing, 

deep inhalation, conversation)—they cause the generation of SCR;
6) a larger number of people should be recruited for the research—approx. 10% 

of the population is hyporesponsive.
After the examination, attention should also be paid to the record of the ob-

tained electrodermal activity. Recordings that raise doubts should be excluded. 
Below, in Figure 5, a correct record of electrodermal activity is presented. In red, 
phase reactions are indicated. Each of them are marked with a ‘drop’. Whereas in 
Figure 6, an erroneous record is shown. It results from the loss of contact between 
the electrodes and the palm of the participant at some point of the test.

Figure 5. Record of correct tonic and phase electrodermal reaction

Source: (Pierański, 2019, p. 184).

Figure 6. Record of electrodermal reaction indicating loss of contact between electrodes and 
skin of the participant

Source: (Pierański, 2019, p. 181).
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What data can be obtained from measuring electrodermal activity?
Three measurements are used to extract information from events. These event 
measurements can provide quick summaries of event information, compute mean 
intervals between event types, and detail other operations.

There are three types of measurements of electrodermal activity:
1) Event Amplitude Measurement—extracts measurement results where events 

are defined:
• Sum of amplitudes of all electrodermal reactions—presents the sum of the 

value for all events within the selected period of time;
• Mean amplitude from all electrodermal reactions—presents the average am-

plitude value for all events within the selected period of time;
• Minimum amplitude from all electrodermal reactions—presents the mini-

mum amplitude value for all events within the selected period of time;
• Maximum amplitude from all electrodermal reactions—presents the maxi-

mum amplitude value for all events within the selected period of time;
• Median value of amplitude from all electrodermal reactions—presents the 

median amplitude value for all events within selected period of time;
• Peak to peak interval of the set of amplitudes from all electrodermal reac-

tions—takes the peak-to-peak difference from the set of amplitudes for all 
events (max–min);

• Standard deviation of amplitudes from all electrodermal reactions—presents 
the standard deviation of the set of amplitudes for all events.

2) Event Count Measurement—evaluates the number of electrodermal reactions 
within the selected period of time.

3) Event Location Measurement—extracts information about the times of elec-
trodermal reactions.

2.4. How to successfully conduct experiments on EDA 
(step-by-step guide)

In this chapter, BIOPAC systems and software (AcqKnowledge) for EDA analysis 
are presented. 

2.4.1. Equipment preparation

The first step in conducting experiments is to prepare relevant equipment. The 
research equipment that is described in the chapter consists of the following ele-
ments (see Figure 7):
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1) logger—that wirelessly acquires and stores biometric data (EDA included);
2) transmitter—that applies electrical potential between two points of skin contact 

and measures the resulting current flow between them;
3) wire—that connects electrodes with the transmitter; 
4) electrodes—two of them.

This set is suitable for conducting experiments in natural conditions, requiring 
the movement of people (e.g. inside a store).

A – logger, B – transmitter, C – wire, D – electrodes

Figure 7. Components of equipment used to measure EDA 

Source: Own compilation.

At the initial stage of each experiment, a wireless connection between the log-
ger and transmitter needs to be established. In order to do so, please follow the 
instructions presented in Figures 8–11.
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Figure 8. Preparing equipment—step 1

Source: Own compilation.

Figure 9. Preparing equipment—step 2

Source: Own compilation.
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Figure 10. Preparing equipment—step 3

Source: Own compilation.

Figure 11. Preparing equipment—step 4

Source: Own compilation.

Once a connection between the logger and transmitter is established, the next 
step is to put the equipment on the participant’s forearm. To do this correctly, please 
follow the sequence presented in Figure 12.
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Figure 12. Preparing equipment—step 5

Source: Own compilation.

2.4.2. Acquiring EDA data

After establishing a wireless connection between the transmitter and logger, as well 
as putting the research device on the participant’s forearm, the next part of the 
experiment is data acquisition. In order to record the required data, please follow 
the steps described in Figures 13–19.

Note: From the main menu, choose ‘Acquire’ by pressing the far right button.

Figure 13. Data acquisition—step 1

Source: Own compilation.
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Note: From the ‘Acquire’ menu, choose ‘Start’ by pressing the far right button.

Figure 14. Data acquisition—step 1

Source: Own compilation.

Note: Confirm data acquisition by pressing the far right button.

Figure 15. Data acquisition—step 3

Source: Own compilation.
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Note: This is what the logger screen should look like during the process of data recording.

Figure 16. Data acquisition—step 4

Source: Own compilation.

After starting the recording, electrodes can be connected to the transmitter 
(see: Figure 17).

Note: Proper connection of electrodes to transmitter.

Figure 17. Data acquisition—step 5

Source: Own compilation.
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Note: In order to terminate data acquisition, first press and hold the far left button for a few seconds, then press 
the far right button.

Figure 18. Data acquisition—step 6

Source: Own compilation.

Note: Save acquired data by pressing the far right button.

Figure 19. Data acquisition—step 7

Source: Own compilation.
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2.4.3. Analysing EDA data

After acquiring data, the next step is its analysis. The logger must be connected to 
a computer with downloaded AcqKnowledge software. And then, follow the steps 
described in Figures 20–25.

Figure 20. EDA data analysis—step 1

Source: Own compilation.

Figure 21. EDA data analysis—step 2

Source: Own compilation.
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Figure 22. EDA data analysis—step 3: importing EDA data from logger  
to AcqKnowledge software

Source: Own compilation.

After importing data from logger, several channels (graphs) may be presented in 
the AcqKnowledge software. In order not to analyse graphs that not relate to elec-
trodermal activity (in Figure 23, graphs: X, Y, Z and PPG), from the pop-up menu, 
select ‘Channels’ and unclick unwanted channels (only EDA channel should be 
marked). In this case, only EDA channel remains on the screen and can be analysed. 

Figure 23. EDA data analysis—step 4: selecting EDA channel

Source: Own compilation.
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To establish emotional response to experimental stimuli, Phasic EDA needs to 
be analysed. This type of electrodermal activity has to be derived from tonic EDA, 
that is—by default—recorded by logger. In Figure 24, the process of obtaining 
Phasic EDA (from the EDA channel) is presented.

Figure 24. EDA data analysis—step 5: deriving phase EDA from tonic 

Source: Own compilation.

What the screen should look like after deriving Phasic EDA from tonic is pre-
sented in Figure 25. There must be two channels: EDA and Phasic EDA (Phasic 
EDA is highlighted in yellow).

Figure 25. EDA data analysis—derived Phasic EDA (graph highlighted in yellow)

Source: Own compilation.
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There are a few main ways of exploring and analysing EDA data. The most com-
monly used is the so-called I-Beam procedure. I-Beam analysis is based on number 
of electrodermal activity measurements that can be selected by the researcher. The 
procedure starts by choosing the required measurements from ‘measurement boxes’. 
In Figure 26, the location of measurement boxes is provided. Please note that each 
measurement can be assigned to a specific channel (each graph represents one 
channel). In Figure 26, it can also be seen where the required channel can be set. 
The best option is to choose ‘SC’, which stands for ‘selected channel’. The channel 
selection can be done by selecting a specific graph (by clicking it and making it 
highlighted in yellow). It is recommended to assign all measurements to one chan-
nel only. In Figure 27, it can be observed which measurements can be selected for 
each measurement box. 

To provide information in measurement boxes, specific regions of the signal 
need to be highlighted for analysis using the I-Beam tool. This tool works in 
conjunction with the measurement boxes (which provide output from the region 
highlighted by the I-Beam tool) (Braithwaite et al., 2015). In Figures 28 and 29, 
it is explained how to proceed in this case.

Figure 26. EDA data analysis—step 6: selecting measurement boxes and channels 

Source: Own compilation.
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Please note: The list pop-ups when clicking on specific measurement box.

Figure 27. EDA data analysis—step 7: choosing EDA measurements

Source: Own compilation.

Figure 28. EDA data analysis—step 8: choosing I-Beam analysis

Source: Own compilation.
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Figure 29. EDA data analysis—step 9: example of highlighted region of signal and 
corresponding measurement boxes providing output from the highlighted area

Source: Own compilation.

The final part EDA data analysis is to copy selected measurements to the so-
called ‘Journal’. This is a part of AcqKnowledge software (visible at the bottom of 
the screen) that allows to export data to statistical software for advanced analysis 
(see: Figure 30). 

Please note: In Figure 30, all measurements refer to the EDA channel that is highlighted in yellow.

Figure 30. EDA data analysis—step 10: copying selected measurements to the journal

Source: Own compilation.
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2.5. Case study—Perception of a humanoid robot1

In an effort to streamline client services in selected branches, a financial institution 
operating on the Slovak market wanted to find out how people react to interaction 
with a humanoid robot. The goal of the humanoid robot was to act as a navigator 
to guide the client with respect to the problem/service the client needs to solve. 
The institution decided to carry out a qualitative ad-hoc survey using biometric 
tools in order to reveal real perception and emotional feedback due to interaction 
with the robot.

The main objectives of the project were defined as follows:
1) information about real emotional feedback;
2) identification of stressful parts regarding the interaction;
3) comparison of the declarative part through in-depth interviews and uncon-

scious perception.
The testing was performed using in-depth interview and biometric tools (eye-

tracking and measurement of electrodermal activity), as well as by implementing the 
neuroimaging method of mobile electroencephalography (EEG). The experiment 
included 8 participants, with whom an initial interview was conducted immediately 
after their arrival and then, they visited the particular branch in order to interact 
with the robot. During the interaction with the robot, immediately after arriving to 
the branch, the subjects were monitored for visual and emotional feedback. After 
completing the practical interaction, a second in-depth interview was conducted 
with the respondents.

From the graph presented in Figure 31, it is possible to note the average values   
of skin resistance recorded during interaction with the robot. A more significant 
decrease in resistance and thus, a higher level of emotional arousal (nervous irrita-
tion), can be observed during eye contact with a humanoid robot and subsequent 
communication with it (event indicated with a red vertical line). These results can 
be largely influenced by the uncertainty of the respondents as to how the whole 
process of interaction/solution of the banking operation will take place (entering 
a request on the display, real communication with the robot, etc.).

The aim of the graphs in Figure 31 is to demonstrate which parts of solving 
the banking process were more frustrating for participants in comparison to oth-
ers. The statements of 7 respondents indicating that they would appreciate if this 
technology became a common and everyday part at the branch of the institution, 
are also the proof of this.

In Figure 32, the individual values   of male skin resistance are shown, in which 
the technology of the humanoid robot did not work properly (rotation of the head 

1 Please note that in the following case study, skin resistance was measured. In that case, the lower 
the level—the higher the emotional arousal. 
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and speech failure of the robot) due to disconnection of the remote control. Based 
on the observed range, one can state that this moment was very emotional for the 
respondent (decrease of skin resistance at approximately 1,000 kOhm). 

Figure 31. Average value of skin resistance (kOhm) when interacting with a robot

Source: Own compilation based on research from 2019.

Figure 32. Average value of the skin resistance (kOhm) for an individual when interacting with 
a robot that did not work properly

Source: Own compilation based on research from 2019.
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Although the traditional research tools are effective, there are situations in which 
other forms of innovative approaches are needed, mainly focused on subconscious 
perception. The combination of traditional and biometric tools, which include 
the measurement of skin resistance, appears to be an effective tool for obtaining 
a realistic image of human perception.
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As described in the first part of the book, the analysis of the experiment results will 
follow one of two approaches: between-subject and within-subject. This division is 
reflected in the analytical part. The first two chapters (1 and 2) are devoted to the 
between-subject approach, first if only one hypothesis is verified, and the second 
chapter—when more hypotheses are verified. In the last sub-chapter of this part 
(3), the authors deal with the within-subject approach. 

1.1. Independent samples t-test

General information
The independent samples t-test is one of the most popular statistical tests. It is used 
to compare the means of two groups (e.g. age, height, balance in a savings account, 
bio food expenses, exam scores). It is a basic test in experimental designs when one 
group is a control group (e.g. receives placebo or usual treatment), while the other 
one is administered what we want to test. In the t-test, the means and standard 
deviations of two groups are computed and it is checked whether there is a statisti-
cally significant difference between means. The compared groups may be selected 
by the researchers while assigning participants to different conditions or may occur 
naturally (Verma & Abdel-Salam, 2019). It should be borne in mind that the differ-
ences between groups may be caused not only by the manipulation of the researcher 
but also by different aspects that influence variance, such as individual differences 
or IQ (Field, 2013).

Hypothesis
In order to compare the scores for two groups, the null and alternate hypotheses 
should be stated. The null hypothesis is that the mean scores in the two groups 
are equal. This indicates that the observed difference is due to chance alone. The 
alternate hypothesis is that the means in two groups differ from each other (Lind, 
Marchal, & Wathen, 2006).

H0: m1 = m2

H1: m1 ≠ m2

Assumptions
The following assumptions are associated with the independent samples t-test:

 – the level of measurement should be interval or ratio (what in SPSS is indicated 
as the scale level of measurement);
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 – the samples must be disjoint, which means there should be no relationship be-
tween the subjects in the groups, the samples should be unrelated to each other;

 – samples should be randomly selected, which means that the data constitute 
a representative portion of the total population and every individual has the same 
chance to be selected into the sample (Verma & Abdel-Salam, 2019; Waters, 2011);

 – the data should follow normal distribution and the dataset should not include 
outliers. The researcher should check if there are any extreme (unusually high 
or low) values in the dataset (Verma & Abdel-Salam, 2019);

 – the sample should be reasonably large. Although we can technically carry out 
the t-test with a group of any size, the results of the t-test are considered stronger 
with larger samples. It is often recommended that each sample should have 
about 30 observations, but groups do not necessarily have to include the same 
number of participants (Lind et al., 2006; Waters, 2011).

Example
Dataset: dwell time of studying information about managing electricity expenses 
in two groups. 

The community managing the apartment blocks has chosen two random groups, 
each consisting of 105 families living in medium-size flats. (Note, the groups don’t 
have to be equal, they can have different number of cases). Both groups got one page 
with information on sustainable household management. Electricity management 
comprised 30% of the page. One of the groups received additional information 
about the future increase in the price of electricity. The other group was the control 
(without this info). Using eye-tracking gear, the dwell time in the area of interest 
(AOI) covering the info about electricity expenses was recorded for every participant.

Data info: 
 – variable 1: group—nominal, 1—group given the special information,  

2—control group;
 – variable 2: dwell time—scale, recorded time in seconds spent in the AOI (part 

about electricity management). 

Hypotheses:
H0: There is no difference in dwell time between the groups.
H1: There is a difference in dwell time among both groups.

Testing the assumptions
In the presented example, both groups contain 105 observations, thus the assump-
tion of the group size is met. The size of each group can be read from every SPSS 
output (e.g. first line of the Kolmogorov-Smirnov test). 
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Splitting the file—this will cause SPSS to show all the results divided according to 
the selected groups. In this case, the file division will be carried out according to the 
variable “group”, therefore, all the results will be shown separately for the groups—

“control” and “informed”. This command is valid until it is revoked. For revoking, 
please open the dialogue box again and click ‘analyze all cases, do not create groups’.

Figure 1. Splitting the file—path

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 2. Splitting the file—dialogue box

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Normality of distribution
The commonly used test for evaluating the normality is the Kolmogorov-Smirnov 
test. This test allows to compare the set of scores obtained in the study to the nor-
mally distributed scores. 

Hypotheses for the Kolmogorov-Smirnov test
Null hypothesis (H0): The data follow normal distribution. 
Alternate hypothesis (H1): The data significantly differ from normal distribution.

Performing the Kolmogorov-Smirnov test will produce a table with the output 
for both groups separately (group splitting is still valid).

Figure 3. Kolmogorov-Smirnov test for normality of distribution—path

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 4. Kolmogorov-Smirnov test for normality of distribution—dialogue box

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Figure 5. Kolmogorov-Smirnov test for normality of distribution—results

Source: The authors’ own elaboration, IBM SPSS screenshot.

The hypothesis is determined by interpreting the p-value. If the test is significant 
(p < .05), this means that the data do not follow normal distribution. If the test is 
non-significant (p > .05), the distribution of the obtained scores is normal (Field, 
2013; Verma & Abdel-Salam, 2019). In this case, for both groups p = .200, which 
indicates that the assumption of normality is fulfilled.

The next step is performing the t-test itself. Firstly, the splitting of the groups 
needs to be revoked by clicking in the command “analyze all cases, do not create 
groups” in the dialogue box (see Figure 2).

Figure 6. Independent samples t-test—path

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Figure 7. Independent samples t-test—dialogue box

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 8. Independent samples t-test—results

Source: The authors’ own elaboration, IBM SPSS screenshot.

Results
The results are interpreted from the lower table (Independent Samples Test). First, 
the Levene’s test of homogeneity in the second column is read (Sig.):

 – if p > .05, the results are interpreted from the upper row (equal variances as-
sumed);

 – if p < .05, the results are interpreted from the lower row (equal variances not 
assumed).

Now, a decision can be made about the significance of the t-test. In this case, it 
equals p = .199. This value is greater than the critical value of p = .05, indicating 
that the results will be read from the upper row (equal variances assumed). 

In the lower table, it can be checked if the difference is statistically significant 
by interpreting the p-value from the 5th column (Sig. 2-tailed). It can be found that 
p < .001, which is lower than the critical value of p = .05. This means that the null 
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hypothesis can be rejected and the results interpreted as the statistically significant 
difference between the groups. 

In the upper table of the outcome (group statistics), it can be noted that the 
mean for the informed group is 6250.7, while for the control group it totals 5859.4.

The independent t-test hypotheses resolution: 
p < .05—there is a significant difference between the groups; reject H0;
p > .05—there is no significant difference between the groups; do not reject H0.

Effect size 
In order to examine whether the observed difference is significant, the effect size can 
be calculated. This enables determining the size of the observed effect in a stand-
ardised way, which makes the results easy to compare (e.g. with different studies). 
For the independent samples t-test, a popular measure is Cohen’s d:
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Cohen’s d has the following interpretation:
Below 0.2—no effect;
< 0.2–0.5)—small effect; 
< 0.5–0.8)—moderate effect;
0.8 and above—large effect.
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In this case, a moderate effect can be observed (d = 0.68). 

Summary
The community managing the apartment blocks has randomly chosen two groups, 
each consisting of 105 families living in medium-size flats. Both groups received 
one page with information on sustainable household management and 30% of the 
page was devoted to electricity management. One of the groups got additional 
information about future increases in the price of electricity. The other group 
was the control (without this info). Using eye-tracking gear, dwell time in the 
AOI, covering the info about electricity expenses, has been recorded for every 
participant.
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Data info: 
 – variable 1: group—nominal, 1—group given the special information,  

2—control group;
 – variable 2: dwell time—scale, recorded time in seconds spent in the area of 

interest (part about electricity management). 
The dwell time for the electricity expenses regarding AOI in the group without 

extra information was at an average of 5859.4 milliseconds (SD = 522.4), whereas 
in the informed group—at an average of 6250.7 milliseconds (SD = 577.3). The 
t-test revealed that the difference of 391.3 milliseconds is statistically significant (p 
< .001, α = .05), suggesting that the informed participants focused their attention 
on the electricity part longer than the control group. The effect size for this analysis 
(d = 0.68) was found to be moderate. 

More info about the t-test
The independent samples t-test enable comparison of the scores in two separate 
groups (populations), and test if there are differences between them. Precisely, the 
t-test is commonly used in statistics to examine whether the means of two popula-
tions are the same (Field, 2013; Verma & Abdel-Salam, 2019; Waters, 2011). Before 
performing the t-test, the above-mentioned assumptions should be fulfilled (see the 
‘Assumptions’ part in this chapter). However, there is another assumption that has 
not been mentioned in this chapter so far—the homogeneity of variance regarding 
the data. This means that the samples should be selected from populations that have 
equal variance with reference to some criterion. The reason for not mentioning the 
homogeneity of variance is because performing the t-test in SPSS enables interpreta-
tion of the results even if this assumption is violated. Specifically, together with the 
t-test output, this generates Levene’s test and calculates the results for both equal 
and unequal variances (in case of lack of homogeneity between groups, the results 
can be read from the lower row). What also should be emphasized is that violating 
the homogeneity of variance assumption applies only if the sizes of tested groups are 
unequal (Field, 2013). However, the other assumptions may sometimes be violated 
as well and there are certain ways to deal with some of them. If the assumption of 
normal distribution is not fulfilled, there are techniques to convert the data distribu-
tion into at least quasi-normal (e.g. log, root, or Box-Cox transformation). If this is 
not possible, non-parametric tests should be used (Verma & Abdel-Salam, 2019). 

It should be noted that the Kolmogorov-Smirnov test is not the only way of 
checking the normality of distribution. Another popular test that is usually used 
for this purpose is the Shapiro-Wilk test (considered as better for smaller samples). 
The hypotheses and interpretation of test statistics are analogical. However, among 
researchers, there are discussions about the necessity of testing normality before us-
ing the independent sample t-test. That is because if tests depend on the hypothesis 
testing, this may consequently show significant effects for large samples, even in case 
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of irrelevant influences. On the other hand, for smaller samples, the test results may 
not indicate that the assumption is violated (Field, 2013). For more experienced 
investigators, the normality of distribution can be assessed using histograms or by 
assessing skewness and kurtosis.

For effect size calculation, the simplified formula of Cohen’s d was proposed 
with standard deviation of the control group in the denominator. This approach is 
justified because it can be assumed that the treatment in the study may affect not 
only the mean, but also dispersion in the dataset. However, there are other pos-
sibilities of standard deviation calculations used as a standardiser. The commonly 
accepted formula has pooled standard deviation in the denominator that is given 
by the following equation:
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− + −
=
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This formula finds its application especially when there is a remarkable differ-
ence between standard deviations of both groups. Its advantage also depends on 
including the sizes of samples (Borenstein, Hedges, Higgins, & Rothstein, 2009; 
Cumming, 2012; Dean & Illowsky, 2013; Field, 2013). 

Furthermore, when calculating effect size, there is inconsistency in terminology. 
The formula with no pooling (with control standard deviation in the denominator) 
is also referred to as Glass’ d or Glass’ Δ. The researchers sometimes refer to Hedge’s 
g as the measure with pooled standard deviation as a standardiser. Recently, using 
the d for all different formulas prevails. However, it is crucial to explain how the 
effect size was calculated (Cumming, 2012).

R e f e r e n c e s

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Effect sizes based on means. 
In Introduction to meta-analysis. John Wiley & Sons.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum 
Associates.

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-
-analysis. Routledge Taylor & Francis Group. 

Dean, S., & Illowsky, B. (2013). Introductory statistics. OpenStax College.
Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (5th ed.). Sage edge.
Lind, D. A., Marchal, W. G., & Wathen, S. A. (2006). Basic statistics for business & economics (5th 

ed.). McGraw-Hill.
Verma, J. P., & Abdel-Salam, G. A.-S. (2019). Testing statistical assumptions in research. John Wiley 

& Sons, Inc. 
Waters, D. (2011). Quantitative methods for business (5th ed.). Pearson Education Limited.



101  

Independent samples—single hypothesis testing

1.

1.2. Mann-Whitney U test 

General information
The Mann-Whitney U test is a nonparametric test that is an alternative for the inde-
pendent sample t-test. Generally, this test can be carried out when the assumptions 
for using the t-test are not met. The Mann-Whitney U test is used particularly in 
two cases—when at least one variable is ordinal or when the continuous data do not 
follow normal distribution. The Mann-Whitney U test assesses whether samples 
are drawn from the same population. 

Assumptions
The following assumptions associated with the Mann-Whitney U test can be put 
forward:

 – the measurement level of the dependent variable should be at least ordinal;
 – the samples must be disjoint—there should be no relationship between the 

subjects in both groups, the samples should be unrelated to each other (Verma 
& Abdel-Salam, 2019).

Example
Dataset: The company managing sharing bicycles decided to check the impact 
of the station location on the use of bicycles. Two comparable high-schools were 
chosen. In the case of one of them (control group), the location of the station was 
200 m from the entrance and in the other (test group), the station was located just 
in front of the entrance. 

After two months of experiment, two random samples of students from each 
school were selected. Respondents declared the frequency of using the shared bicycles. 

Data info:
 – variable 1: group—nominal (1—distant location, 2—close location);
 – variable 2: freq.—ordinal (declared frequency of using the shared bicycles; 

1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never).

Hypotheses:
H0: There is no difference in the frequency of using shared bicycles between the 

groups.
H1: The frequency of using shared bicycles differs in both groups.

Testing the assumptions
There are two unrelated groups and the frequency is measured on an ordinal scale. 
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In the first step, the medians are computed for both groups. In order to obtain 
the output, the file is split (procedure described in 1.1.) and descriptive statistics 
are run. 

Figure 9. Descriptive statistics—path

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 10. Descriptive statistics—dialogue box

Source: The authors’ own elaboration, IBM SPSS screenshot.



103  

Independent samples—single hypothesis testing

1.

Figure 11. Descriptive statistics—results

Source: The authors’ own elaboration, IBM SPSS screenshot.

The medians are 3 and 5 for the test and control groups, respectively. The number 
of observations can be seen as well. In the next step, the Mann-Whitney U test is 
performed. It will be compared whether the difference between groups is statistically 
significant. Before running the test, it must be remembered to split the groups by 
using the command “analyse all cases, do not create groups” in the dialogue box 
(procedure described in 1.1).

Figure 12. The Mann-Whitney U test—path

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Figure 13. Mann-Whitney U test—dialogue box

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 14. Mann-Whitney U test—results 

Source: The authors’ own elaboration, IBM SPSS screenshot.

Results
The results are interpreted from the last row in the lower table (test statistics). The 
significance equals p = .016, which is lower than the critical level of p = .05. This 
indicates that there is a significant difference in frequencies of using shared bicycles 
between the groups. 
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In Figure 11 (descriptive statistics results), it can be noted that the median for 
the control group is five (once a month) and for the test group it totaled three (2–4 
times a week).

Mann-Whitney U test hypotheses resolution:
p < .05—there is a significant difference between the groups; reject H0;
p > .05—there is no significant difference between the groups; do not reject H0.

Effect size
The effect size measure for the Mann-Whitney U test is the r (do not confuse with 
Pearson’s r), which is calculated using the statistic Z value and n1, n2 being the total 
number of observations in both groups:

1 2

Z
r

n n
=

+

The r has the following interpretation:
Below .1—no effect;
< .1-.3)—small effect; 
< .3-.5)—moderate effect;
.5 and above—large effect (Pallant, 2011; Field, 2013).

2.407
.26

84
r

−
= =

In this case, a small effect (r = .26) can be observed.

Summary
Dataset: The company managing sharing bicycles decided to check the impact 
of the station location on use of the bicycles. Two comparable high-schools were 
chosen. In the case of one of them (control group), the location of the station was 
set 200 m from the entrance and in the other (test group), the station was located 
just in front of the entrance. 

After two months of the experiment, two random student samples from each 
school took part in the study. Respondents declared the frequency of using the 
shared bicycles. 

Data info:
 – variable 1: group—nominal (1—distant location, 2—close location);
 – variable 2: freq.—ordinal (declared frequency of using the shared bicycles; 

1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never).
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Using the bicycles in the test group was more frequent (Mdn = 3; once a month) 
than in the control (Mdn = 5; 2–3 times a week). The Mann-Whitney U test allows 
to indicate that this difference is statistically significant: U(Ncontrol = 45, Ntest = 39) = 
= 613.50, Z = –2.41, p = .016. 

It can be assumed that the location of the station has significant impact on the 
frequency of using the bicycles. This effect is considered small (r = .26).
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1.3. One-way analysis of variance (ANOVA) 

Theoretical background 
One-way analysis of variance (ANOVA) is used to determine if there is a signifi-
cant difference between means of several subpopulations (groups) dependent 
on one factor. In ANOVA, independent variables are organised in categorical 
groups (Dean & Illowsky, 2013; Field, 2013; Fraser, 2016). For example, if the 
difference in one’s average daily income in January, February, March and April 
is to be tested, then there will be four groups of data (according to particular 
month), and daily income expressed in some currency will be the dependent 
variable. If it is to be tested whether there is a difference in sales when merchan-
dise is displayed in a window, in the centre of the shop or at some point behind 
sales person, there will be three groups: “window”, “centre”, “behind”, and for 
one particular product, sales will be measured in some period according to 
those positions. The value of the daily sales will be the dependent variable. Also, 
ANOVA is useful when wanting to observe if there is a significant difference in 
consumer behaviour regarding various socio-demographic characteristics. In 
addition, ANOVA can be useful when wanting to analyse effectiveness of sales 
force in different locations. 

One-way ANOVA is usually utilised when comparing three or more categorical 
independent groups to establish whether there is a statistically significant difference 
between them (Field, 2013; Barrow, 2017). One-way ANOVA can be used in the case 
of just two categorical independent groups, but in that case, the independent sample 
t-test is more frequently used. It is recommended each category (group) contain 
at least two units or two measurements in order to be able to calculate variance.
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Hypothesis
The null hypothesis is that the means of all groups are equal, i.e. that the observed 
difference between groups is due to chance. On the other hand, the alternate hy-
pothesis is that there is at least one pair of groups where the mean between them 
is significantly different.

Assumptions
The following assumptions can be associated with one-way ANOVA independent 
samples (Dean & Illowsky, 2013; Field, 2013; Randolph & Myers, 2013):

 – the independent variable should consist of two or more categorical, independ-
ent groups. Typically, one-way ANOVA is used when there are three or more 
groups, but it can also be used for only two groups (even though the independent 
sample t-test is more commonly used in that case);

 – the samples are disjoint, there is no relationship between the observations in 
each group or between the groups themselves. For example, one participant has 
to be exclusively in one group;

 – the dependent variable should be measured at the interval or ratio level (i.e. 
they have to be continuous); 

 – the dependent variable should be approximately normally distributed for 
each category of the independent variable and there should be no significant 
outliers;

 – homogeneity of variance is required. Therefore, it is recommended to perform 
Levene’s test for homogeneity before application of one-way ANOVA.

Example
Dataset: quantity of food waste measured in grams per month, per person observed 
in four groups of consumers, according to age groups: 18–25; 26–40; 41–60; above 
the age of 60. Food waste as a problem is growing in the modern world. There 
are some studies in which it is shown that age might be the crucial factor when 
explaining difference in consumer behaviour regarding food waste. Thus, it is en-
quired whether there is a difference between generations of consumers regarding 
food waste on a monthly basis. Therefore, research was carried out in which the 
respondents were asked to assess the quantity of wasted food on a personal level 
within one month in grams. The survey was carried out using a random sample 
of 200 respondents.

Data info: 
 – variable 1: groups—nominal (1—age 18–25, 2—age 26–40, 3—age 41–60, 4—

above the age of 60);
 – variable 2: food waste quantity—numeric (grams of wasted food in grams per 

person in a month). 
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Hypotheses:
H0: There is no difference in mean food waste quantities between the groups.
H1: There is at least one group at which mean food waste quantity is different than 

in the other groups.

Testing the hypotheses in SPSS
In this example, 200 respondents were studied, and for each respondent, two types 
of data were collected: (1) age, (2) level of food waste in grams per month, per 
person. Three questionnaires (observations) were not valid, thus the dataset was 
based on 197 valid questionnaires (or observations). 

SPSS does not require grouping the collected survey data, but data is entered as 
an observation per row. In Figure 15, in the first row—in the “Generation” column, 
data on the generation of the respondent is entered and in column “Foodwastegr” 
data on food waste for this respondent is entered, therefore, in row 40, it can be 
observed that the respondent’s age is 18–25 (generation group numbered as 1) and 
respondent wastes 195 grams of food per month (see Figure 15). 

Prior to analysis, the type of loaded data has to be checked, and it is recom-
mended that numerical denomination of categories is used for the independent 
variable (Field, 2013). That means instead of the text “Group 1 (18–25)”, 1 should 
be used to denominate this particular generation of consumers, similarly—“Group 
2 (26-40)” will be coded as 2, etc. It is important to emphasize that with introduc-
ing numeric codes for the variable does not strenghten its measurement level. It 
is still categorical (in our case: ordinal). In Figure 15, see column = “Generation”.

Figure 15. Excerpt from dataset in SPSS

Source: The authors’ own elaboration.
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Before conducting ANOVA, it is recommended to calculate means of groups 
(Note: This step can be skipped, because the latter in the one-way ANOVA pro-
cedure, the option to display descriptive statistics can be chosen, which will show 
the summarised descriptive statistics data for each group). 

In Figure 16, the screenshot shows the command for calculation of means, while 
in Figure 17, it is demonstrated how to set options in order to calculate means for 
various age groups (generations) of consumers based on the dependent variable 

“Food waste in grams” from the dataset.

Figure 16. SPSS Command to calculate means

Source: The authors’ own elaboration.

Figure 17. Setting variables to calculate means for groups in the dataset

Source: The authors’ own elaboration.
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Output of means calculation is given in Figure 18. The first part of the output 
is the summary based on the total sample from which it can be read how many 
cases from the dataset are included or excluded from means calculation. In this 
case, all observations were correct, therefore, all data is included in the calculation 
of means. The second part of the report are means, number of cases (observations) 
and standard errors for each group in the sample, i.e. for each generation of con-
sumers. For instance, for generation 4 or “Group 4 (60+)”, it can be observed that 
average monthly food waste per person is 290.52 grams, the result based on 50 cases 
(observations) with the standard deviation of 89.30. Compared to the total sample, 
this generation has a lower average of food waste. Namely, the average monthly 
food waste, taking all 197 respondents into account, is 376.85 grams per person.

Case Processing Summary
Cases

Included Excluded Total
N Percentage N Percentage N Percentage

Food waste (gr) * Generation 197 100.0% 0 0.0% 197 100.0%

Report
Food waste (gr) 

Generation Mean N Std. Deviation
1 261.88 52 80.236
2 363.18 50 99.787
3 620.82 45 12.660
4 290.52 50 89.300

Total 376.85 197 169.944

Figure 18. SPSS means report

Source: The authors’ own elaboration.

After that, the procedure for one-way ANOVA will be started. Selection of SPSS 
required command is shown is Figure 19, while in Figure 20, the dialogue for tun-
ing up settings in the presented example is given. 

Figure 19. SPSS Command for one-way ANOVA

Source: Authors’ own elaboration.
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Figure 20. Settings of one-way ANOVA for groups in the dataset

Source: The authors’ own elaboration.

Together with basic settings, SPSS can be set to perform post hoc analysis in 
the same run. Therefore, the ‘Post Hoc’ button should be clicked, and the dialogue 
box shown at Figure 21 will appear. Usually, it is enough to do Tukey’s post hoc 
analysis at the confidence level of .05 (necessary settings are shown in Figure 21). 
When everything is set up, the analysis will be run.

Figure 21. Settings of Tukey’s post hoc analysis

Source: The authors’ own elaboration.

In Figure 22, the output of one-way ANOVA is shown. It has to be emphasized 
that the significance value on the output is written as equal to 0.000 (p = .000), but 
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that does not mean that the significance value equals zero. That is just the way SPSS 
tells us that the significance value is below .001. Thus, in accordance with the output, 
it can be concluded that the significance value is very small and, for sure, lower than 
.05. Therefore, at the significance level of .05, the null hypothesis of the test that there 
is no difference in mean food waste quantities between the groups can be rejected. 
So, it can furthermore be concluded that there is at least one group in which mean 
food waste quantity is different than in the other age groups (generations).

Post hoc analysis provides scrutinized insight into differences between pairs of 
groups. As a result, the significance value (see Sig. column in Post hoc analysis) 
can be observed for each age group compared to other age groups. In the presented 
example, it can be seen that all significance values are less than .05, except for the 
value use to compare age groups (generation) 1 and 4 (p = .469). Therefore, for 
instance, it can be assumed that the average quantity of food waste per month, per 
person from generation 1 is statistically different compared to generations 2 and 
3, respectively. However, at the significance level of .05, the hypothesis cannot be 
rejected that there is no statistically significant difference between generations 1 
and 4 regarding the average quantity of food waste per month, per person.

ANOVA
Food waste gr 

Sum of squares  df Mean square F Sig.
Between groups 3747782.985     3 1249260.995 126.044 .000
Within groups 1912881.745 193 9911.304
Total 5660664.731 196

Post hoc tests
Multiple comparisons
Dependent variable: Food waste gr 
Tukey HSD 

(I) Generation (J) Generation Mean difference (I -J) Std.  
Error Sig. 95% Confidence interval

Lower bound Upper bound

1
2 –101.295* 19.719 .000 –152.40 –50.19
3 –358.938* 20.270 .000 –411.47 –306.41
4 –28.635 19.719 .469 –79.74 22.47

2
1 101.295* 19.719 .000 50.19 152.40
3 –257.642* 20.457 .000 –310.66 –204.63
4 72.660* 19.911 .002 21.06 124.26

3
1 358.938* 20.270 .000 306.41 411.47
2 257.642* 20.457 .000 204.63 310.66
4 330.302* 20.457 .000 277.29 383.32

4
1 28.635 19.719 .469 –22.47 79.74
2 –72.660* 19.911 .002 –124.26 –21.06
3 –330.302* 20.457 .000 –383.32 –277.29

Figure 22. Output of one-way ANOVA in SPSS

Source: The authors’ own elaboration.
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Testing hypotheses in Excel
In order to perform analysis of the same dataset in Excel, collected data has to be 
prepared for analysis, i.e. collected data has to be classified into columns that rep-
resent groups (Balakirshnan, Render, & Stair, 2007; Winston, 2016; Fraser, 2016). 
In our case columns will represent groups by age—generations of consumers. 
Therefore, in this case, the collected data will be classified into four columns and 
each column will be labelled according to consumer generation (in Figure 23, see 
title of columns in row 3). Then, all observed values will be entered for each genera-
tion of consumers. For instance, if a certain respondent is from generation 2 (age 
26-40) and wastes 407 grams of food per month, his/her data is entered into the 
second column—‘Group 2 (26-40)’ (in Figure 23, see row 15). In the SPSS dataset, 
data on this respondent was entered as a simple observation in a single row as 2 
and 407 (see Figure 15, row 64).

Figure 23. Excerpt from dataset for one-way ANOVA of food waste according to age 

Source: The authors’ own elaboration.

Then, ‘Data tab’ has to be selected and ‘Data Analysis’ (within Analysis group 
of commands) clicked. (Note that Data Analysis pack is not defalult package, you 
have to install it in your Excel). From among the list of methods, ‘Anova: Single 
Factor’ is chosen (see Figure 24).
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Figure 24. Data analysis tab in Excel—selection of ANOVA method: Single Factor

Source: Authors’ own elaboration.

In the dialogue box of Anova: Single Factor—configuration has to be carried 
out as follows (see Figure 25):

 – input range of the dataset including labels, in this example—A3:D55;
 – position of data labels, in this example—First Row (there are names of the 

observed groups);
 – way of organising groups of data, in this case, data is organised in columns, 

therefore, ‘Columns’ is chosen;
 – output range—data can be choosen to be shown at some position in the active 

worksheet. Then, the exact cell, from which our results are going to be presented 
(such as F3), has to be specified; but in this case, we rather specified ‘New work-
sheet’ was indicated as the location for results. A name for the output can be 
specified (in this example—‘Anova1’);

 – finally, the level of significance, i.e. alpha value. The default value, already set 
to .05, can be used.
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Figure 25. Dialog box—ANOVA: Single Factor

Source: The authors’ own elaboration.

In Figure 26, the results of data analysis are shown, and the results can be inter-
preted. First of all, basic descriptive statistical data on each age group is obtained 
(see SUMMARY). From this part, it can be read how many respondents are in which 
group, then, what the average food waste in each group is, as well as the variance 
within each group. For instance, the lowest average of 261.88 grams of food waste 
per person, per month is shown in ‘Group 1’ (aged 18–25). The highest average 
value is in ‘Group 3’ (aged 41–60) and amounts to 620.82 grams a month, per 
person. In addition, ANOVA results are shown. In this table, the most important 
reading is p-value, because using this value, it can be decided not to reject or to 
reject the null hypothesis. In this case, the p-value is 3.08*10-45, or if rounded and 
truncated to four decimal points, the p-value is: .0000. However, the more precise 
would be if it were said that the p-value is lower than .0001 (p-value <.0001). In 
this way, it can be concluded that the significance value is much lower than that 
of .05. Consequently, that result means that the null hypothesis H0 can be rejected 
and that there is no difference in mean food waste quantities between groups. In 
other words, at a significance level of .05, it may be concluded that there is at least 
one group in which mean food waste quantity is statistically different than in the 
other age groups (generations).
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Figure 26. One-way ANOVA results

Source: The authors’ own elaboration.

If ANOVA shows that there is a statistically significant difference between 
observed groups, post hoc analysis has to be carried out by comparing pairs of 
groups in order to explain which groups differ in comparison to the other groups. 
For this purpose, several t-tests can be performed in Excel.

In the presented example, the t-test will be performed between Group 1 and 
Group 2 as an example. This kind of comparison is then done to compare Group 
1 to Group 3, Group 1 to Group 4, Group 2 to Group 3 and Group 2 to Group 4. 
The t-tests have to be repeated accordingly to investigate differences between all 
possible pairs of groups in the dataset.

Steps for performing the t-test in Excel are the following: first, it must be speci-
fied which type of t-test it to be performed. This is done via the ‘Data analysis’ tab 
(see Figure 27).

During this step, the t-test: ‘Two Samples Assuming Equal Variance’ is chosen.
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Figure 27. Data analysis tab in Excel—selection of t-test type

Source: The authors’ own elaboration.

Then, in the t-test dialogue box (see Figure 28), it has to be specified which data 
is to be compared. The first pair of data comprises Group 1 (18–25) and Group 2 
(26–40). Therefore, the range of data for Group 1 in ‘Variable 1 Range’ is specified, 
and the same is done for ‘Variable 2 Range’, giving the range of data from Group 2. 
Moreover, the data has data labels in the first row of selected data range, thus, ‘Labels’ 
have to be checked. Finally, the location for the output or results are specified. In 
this case, it was decided to have a new worksheet named ‘G1 vs. G2’.

Figure 28. Dialogue box for t-test: Two Sample Assuming Equal Variances

Source: The authors’ own elaboration.
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After clicking ‘OK’, the output of the t-test is shown (see Figure 29) and inter-
pretation can be carried out on the basis of the analysed pair of variables (in this 
test—Group 1 and Group 2).

Figure 29. T-test results for pair of groups 

Source: The authors’ own elaboration.

If the post hoc t-test results are to be interpreted, the p-value for two-tail com-
parison is used (see Figure 21). Based on the level of significance of .05, it can be 
concluded that the given p-value (in this case: 1.4607*10-7 or truncated to four 
decimal digits: 0.0000), is lower than .05 and that there is a statistically significant 
difference in means between Group 1 (18–25) and Group 2 (26–40). However, 
by doing so, an erroneous conclusion could be drawn. Therefore, as suggested in 
literature on the subject, before final conclusions, the significance level of .05 has 
to be adjusted according to number of groups of data in the ANOVA. As in this 
case there are 4 groups of data (according to the age of respondents), the relevant 
value for comparison would be .05 divided by 4, i.e. .0125. Thus, in order to carry 
out the correct interpretation and reach adequate conclusions, the given p-value 
of the t-test has to be compared for each pair of groups in the dataset to .0125, not 
to .05! In this case, .0000 is lower than .0125, and it may be concluded that there 
is a statistically significant difference between the means for Group 1 (18–25) and 
Group 2 (26–40).

After this, the t-test is iteratively repeated for all pairs of data in a similar way. 
In Table 1, the totalled t-test p-values relevant for each pair of groups is shown 
The p-value is given in a default calculated format (scientific) and then in numeric 
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format truncated to 4 decimal digits. From the table, it may be concluded that at 
the level of .05, there is a statistically significant difference between all observed 
groups, except for Group 1 (18-25) and Group 4 (60+). For that pair of groups, the 
calculated p-value is higher than the adjusted significance level of .0125. Therefore, 
we cannot reject the hypothesis that there is no difference between the means of 
those groups.

Table 1. T-test relevant p-values for given example

Source: The authors’ own elaboration.

It must be borne in mind that such post hoc analysis is performed only in the 
case when ANOVA indicates that there is a difference between means of several 
groups of data in the dataset in order to interpret data more accurately and precisely 
(Fraser, 2016; Winston, 2016).

Summary of the example
Dataset: the food waste quantity in city A is inspected. In the conducted survey, 
a total of 200 respondents participated. However, three questionnaires have been 
declared invalid. Consequently, in the analysis, 197 data units about monthly 
food waste quantity of the respondents are used. In order to get better insight 
into monthly food waste quantity, the respondents have been divided into four 
categories according to age.

Data info: 
 – variable 1: groups—nominal (1—age 18–25, 2—age 26–40, 3—age 41–60, 4—

above the age of 60);
 – variable 2: food waste quantity—numeric (wasted food in grams per person, 

per month). 

The one-way ANOVA approach was used to inspect whether the average monthly 
food waste quantity can be considered the same across all four age groups. However, 
the results of one-way ANOVA have shown that there was a statistically significant 
difference between age groups (F(3,193) = 126.044, p < .001). Tukey’s post hoc test 
revealed that the average monthly food waste quantity for people aged 18–25 was 

t-test p-value (scien�fic) t-test p-value (numeric) Decision (according to adjusted significance 0.0125)
Group 1 (18-25) Group 2 (26 - 40) 1.44602E-07 0.0000                        reject H0 (there is difference)
Group 1 (18-25) Group 3 (41 - 60) 2.23E-30 0.0000                        reject H0 (there is difference)
Group 1 (18-25) Group 4 (60+) 0.091316825 0.0913                        not reject H0 (there is no difference)
Group 2 (26 - 40) Group 3 (41-60) 1.16784E-18 0.0000                        reject H0 (there is difference)
Group 2 (26 - 40) Group 4 (60+) 0.000220728 0.0002                        reject H0 (there is difference)
Group 3 (41-60) Group 4 (60+) 3.46163E-26 0.0000                        reject H0 (there is difference)

Pair of groups
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statistically significantly lower than the average monthly food waste quantity for 
those aged 26–40 (p < .001), while the average monthly food waste quantity for 
individuals aged 41–60 (p < .001). However, there was no statistically significant 
difference in the average monthly food waste quantity for people aged 18–25 or 
for those above the age of 60 (p = .469).

More info about one-way ANOVA
One-way ANOVA is used to inspect whether there are any statistically significant 
differences between the means of two or more independent groups. Despite the 
fact that one-way ANOVA can be used for comparing means between two inde-
pendent groups, it is more often applied in cases where there are three or more 
independent groups, whereas in the cases of two independent groups, the t-test 
for independent samples is applied.

In order for one-way ANOVA to be used, six assumptions have to be fulfilled. 
Three of them can be checked without any computer software use: independent 
variable should consist of two or more categorical independent groups; inde-
pendence of observations; dependent variable should be measured at the interval 
or ratio level. Those assumptions are straightforward and they can be verified 
very quickly. The other three assumptions should be checked using a computer 
program.

The fourth assumption is that dependent variable should be approximately 
normally distributed. The normality of data can be tested, for example, by use of 
the Shapiro-Wilk test for normality of distribution, and Kolmogorov-Smirnov test. 
The normality of data can be inspected graphically as well by using, for example, the 
normal Q-Q plot. In case of not normal distribution, the data should be converted 
into that normal by applying certain techniques. Technically spoken, there should 
be at least two units in each group to apply one-way ANOVA. However, the more 
units there are in each group, the larger the sample size. Consequently, it is more 
likely that the normality assumption will be fulfilled. 

Because outliers have huge impact on the mean values, their presence has certain 
influence on the results of one-way ANOVA. Therefore, outlier analysis should 
be performed before conducting one-way ANOVA. The most straightforward 
approach to detect outliers is to standardise all values and then to check whether 
any of them deviate from the mean value more than three standard deviations. 
The outliers can be detected by using different graphical approaches as well. It has 
to be emphasized that outliers may have different sources. They can appear due to 
certain characteristics of the observed unit, but can also be the product of technical 
error (for example, data is mistyped). 

The final assumption of one-way ANOVA application is homogeneity of vari-
ance between the groups. This assumption can be checked by Levene’s test for 
homogeneity of variance. The null hypothesis of the test contains the assumption 
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that the observed groups all have equal population variances. In the given case this 
assumption is not met, thus, Welch’s ANOVA should be used instead of this classic 
one-way ANOVA approach.

R e f e r e n c e s

Balakirshnan, N., Render, B., & Stair, R. M. (2007). Managerial decision modeling with spreadsheets. 
Pearson Prentice Hall.

Barrow, M. (2017). Statistics for economics, accounting and business studies. Pearson.
Dean, S., & Illowsky, B. (2013). Introductory statistics. OpenStax College.
Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (5th ed.). Sage edge.
Fraser, C. (2016). Business statistics for competitive advantage with Excel 2016. Springer.
Randolph, K. A., & Myers, L. L. (2013). Basic statistics in multivariate analysis. Oxford: University Press.
Winston, W. L. (2016). Microsoft Excel 2016: Data analysis and business modelling. Microsoft Press.

1.4. Kruskal-Wallis H test 

General information
The Kruskal-Wallis H test is a commonly used nonparametric alternative to one-
way ANOVA. It can be used when one-way ANOVA assumptions are violated—for 
example, when the dependent variable is measured on an ordinal scale. The test is 
similar to the Mann-Whitney U test, but it is used to compare scores in three or 
more groups. Since the Kruskal-Wallis H test does not require normality of data 
distribution, it does not allow comparison of means but ranks. The procedure 
includes ordering the observations from lowest to highest, and giving them ranks 
(Pallant, 2011; Verma & Abdel-Salam, 2019).

Hypotheses:
H0: There is no difference between the scores. 
H1: There is at least one difference between the scores.

Assumptions
The following assumptions are associated with the Kruskal-Wallis H test:

 – the measurement level of the dependent variable should be at least ordinal;
 – there should be one independent variable divided into three or more groups;
 – groups do not have common elements. 

Example
Dataset: The company managing sharing bicycles decided to check the impact of the 
station location on the use of the bicycles. Three comparable high-schools were cho-
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sen and for each of them, a different proximity of the station was set. The first school 
had a distant location, 200 m from the entrance; the second school had a middle 
location (100 m); while the third had the station set exactly in front of the entrance. 

After two months of experiment, three random samples of students from each 
school have been selected (39, 44 and 45 students). Respondents declared the 
frequency of using the shared bicycles. 

Data info:
 – variable 1: group—nominal (1—close location (N = 39), 2—middle location 

(N = 44), 3—distant location (N = 45));
 – variable 2: freq.—ordinal (declared frequency of using the shared bicycles; 

1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never).

Hypotheses:
H0: There is no difference in the frequency of using shared bicycles between the 

groups.
H1: The frequency of using shared bicycles differs among the groups, at least one 

group is different from the other.

Figure 30. Kruskal-Wallis H test—path

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Figure 31. Kruskal-Wallis H test—dialogue box (1)

Source: The authors’ own elaboration, IBM SPSS screenshot.

In the first dialogue box, three tabs can be seen—‘Objectives’, ‘Fields’ and ‘Set-
tings’. The objective of the analysis is defined by choosing the default option—
‘Automatically compare distributions across groups’. 

Figure 32. Kruskal-Wallis H test—dialogue box (2)

Source: The authors’ own elaboration, IBM SPSS screenshot.
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In the next step, we move to the tab ‘Fields’ where the analysed variable (‘Test 
fields’) and grouping variable (‘Groups’) are chosen. 

Figure 33. Kruskal-Wallis H test—dialogue box (3)

Source: The authors’ own elaboration, IBM SPSS screenshot.

In the last step, we choose ‘Customize tests’ and select ‘Kruskal-Wallis 1-way 
ANOVA’ (k samples) with multiple comparisons: ‘All pairwise’.

Figure 34. Kruskal-Wallis H test—results

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Results
The hypothesis is decided upon by interpreting the ‘Asymptotic Sig. (2-sided test)’ 
value in the lower table. In this case, it equals p = .038. This value is lower than 
the critical value of p = .05, which indicates that there is at least one significant 
difference in scores across the various groups. The first dialogue box presents only 
a general result of the Kruskal-Wallis H test—which of the groups is significantly 
different from the other ones is still unknown. 

Figure 35. Kruskal-Wallis H test—pairwise comparisons (1)

Source: The authors’ own elaboration, IBM SPSS screenshot.

In order to identify the differences between the groups, pairwise comparisons 
are examined. ‘Adj. Sig.’ value for the last column is interpreted. In the presented 
example, the p-value is lower than the critical value of p = .05 when comparing only 
the close and distant locations (p = .036). This means that there is a significant dif-
ference in the frequency of using shared bikes between these groups. The p-values 
for other comparisons: p = .249 and p = 1.000, mean that there is no significant 
difference in the frequency of using bikes. 

Figure 36. Kruskal-Wallis H test—pairwise comparisons (2)

Source: The authors’ own elaboration, IBM SPSS screenshot.
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The results can be compared by looking at the box-and-whiskers graph and at the 
visual representation of pairwise comparisons. The blue line in the graph on the 
right indicates a significant difference in the frequency of using shared bikes be-
tween close and distant locations. The red line indicates an insignificant difference. 

Results and post hoc tests
Kruskal-Wallis H test hypotheses resolution:
p < .05—there is at least one significant difference in scores across different groups; 
reject H0;
p > .05—there is no significant difference in scores across different groups; do not 
reject H0.

Effect size
The effect size measure for Kruskal-Wallis H test is calculated following the pro-
cedure for the Mann-Whitney U test (Pallant, 2011).

The effect size measure (r) is based on the statistic Z and N values which is total 
number of observations in both groups:

Z
r

N
=

The effect size can only be calculated for significant differences between groups. 
The Z value for each comparison is expressed as ‘Std. Test Statistic’ in the ‘Pairwise 
Comparisons of Locations’ table. 

The r has the following interpretation:
Below .1—no effect;
< .1-.3)—small effect; 
< .3-.5)—moderate effect;
.5 and more—large effect.

2.514
0.27

84
r

−
= =

In this case, a small effect size (r = .27) can be observed.

Summary
Dataset: The company managing sharing bicycles decided to check the impact of 
the station location on the use of the bicycles. Three comparable high-schools were 
chosen, and for each of them a different proximity of the station was set. The first 
school had a distant location, 200 m from the entrance, the second one had moder-
ate location (100 m), while the third school was set exactly in front of the entrance. 
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After two months of the experiment, three random samples of students from each 
school were selected (39, 44 and 45 students). Respondents declared the frequency 
of using the shared bicycles. 

Data info:
 – variable 1: group—nominal (1—close location (N = 39), 2—middle location 

(N = 44), 3—distant location (N = 45));
 – variable 2: freq.—ordinal (declared frequency of using the shared bicycles; 

1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never)

The Kruskal-Wallis H test allowed to reveal that the frequency of using shared 
bikes differed statistically significantly across different locations. Pairwise com-
parisons indicated that there is a difference in the frequency of using shared bikes 
between the students from school with close location of the station and with dis-
tant location of the station (Gc, n = 39, Gd, n = 45, Z = –2.514; p = .036). Students 
from schools close to the station used bikes more often (Mdn = 3) than students 
from those with distant locations (Mdn = 5). However, this effect was rather small 
(r = .027). The analysis did not show any significant differences between other groups. 

More information
The result of Kruskal-Wallis H test does not inform us about the between-group 
comparisons. In order to compare separate groups pairwise, Bonferroni adjustment 
needs to be applied. This involves multiplying the significance by the number of 
tests (significance level equal to p = .012 after multiplication is shown as adjusted 
significance ((‘Adj. Sig.’) p = .036). The same result may be obtained by dividing 
the alpha level of .05 by the number of tests that are intended to be used, and by 
implementing the initial significance level (‘Sig.’). While interpreting the group 
comparisons the revised alpha level should be used as the criteria for determining 
significance. However, the described procedure shows the results applying Bonfer-
roni adjustment.
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2.1. Two-way analysis of variance (ANOVA)  
without replication 

General information
Two-way analysis of variance (ANOVA) without replication is used to deter-
mine if there is a significant difference between means of several subpopulations 
(groups) dependable on two independent factors (Balakirshnan, Render, & Stair, 
2007; Fraser, 2016; Randolph & Myers, 2013). In other words, a two-way ANOVA 
(also called factorial ANOVA, with two factors) is applied when we have one 
measurement variable and two nominal variables (usually called ‘factors’ or ‘main 
effects’). For instance, we could apply ANOVA with two factors without replication 
when explaining differences of revenue generation in different stores for different 
seasons where store would be one factor and particular season other factor by 
which we test differences in revenue generation. Or we can apply ANOVA with-
out replication when we want to test in-field results of promotional activities of 
various sales representatives and various location where activities are applied (in 
this case representatives are one factor, locations are second factor and results or 
effect of promotion is variable which is tested for differences according to those 
two factors).

Hypothesis
In two-way ANOVA without replication, there is a single observation for each 
combination of the nominal variables, therefore we have only two null hypotheses: 
H0(1): There is no difference between means of observations grouped by one fac-

tor. 
H0(2): There is no difference between means of observations grouped by other 

factor. 
In two-way ANOVA without replication we assume that there is no interaction 

between factors.

Assumptions
There are the following assumptions associated with the two-way ANOVA without 
replication (Dean & Ilowsky, 2013; Field, 2013; Winston, 2016):

 – dependent variable—should be continuous; 
 – two independent variables (factors)—should be in two or more categorical, 

independent groups;
 – each sample has to be drawn independently of the other samples (the samples 

are disjoint);
 – the variance of data in the different groups should homogenous;
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 – each sample should be taken from a normally distributed population;
 – there is no dependence or interaction between factors;
 – there are no significant outliers.

Example
Dataset: In Retail Company Tradex we collected data on value of expired or spoiled 
merchandize in EUR per week. Now we want to analyze if this value varies accord-
ing to sales region and according to product categories. 

Data info: 
 – variable 1: product category—nominal (1—Fruits and vegetables, 2—Diaries, 

3—Meat);
 – variable 2: sales region – nominal (1—East, 2—West, 3—North, 4—South);
 – variable 3: value of expired or spoiled merchandize in EUR per week—numeric. 

Hypotheses:
H0(1): There is no difference between means of value of expired or spoiled mer-

chandize grouped by product category.
H1(1): There is a difference between means of value of expired or spoiled mer-

chandize grouped by product category.

H0(2): There is no difference between means of value of expired or spoiled mer-
chandize grouped by sales region. 

H1(2): There is a difference between means of value of expired or spoiled mer-
chandize grouped by sales region. 

Testing the hypotheses in SPSS
In our example, we observed value of expired or spoiled merchandize in EUR per 
week in a particular sales region and in particular product categories. In Table 1, 
dataset is shown.

Table 1. Dataset for two-way ANOVA without replication

1—Region East 2—Region West 3—Region North 4—Region South
1—Fruits and vegetables 130 150 280 140
2—Diaries 250 320 330 230
3—Meat 120 130 250 180

Source: The authors’ own elaboration.

For analysis in SPSS we will form three variables “Type”, “Region” and “FW”, 
then we will proceed to enter data. In the first row (see Figure 1, Row 1) we will 
enter 1, 1, 130 (meaning: 1—Fruit and vegetables, 1—Region East, 130 EUR of 
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expired and spoiled merchandize per week). Then we will proceed to enter 1, 2, 
150 (see Figure 1, row 2) for Fruits and vegetables in Region West—value 150 EUR.

Figure 1. Dataset prepared for two-way ANOVA without replication analysis in SPSS

Source: The authors’ own elaboration.

When all data is entered, we will choose type of analysis (see Figure 2). For two-
way ANOVA without replication, we will select General Linear Model, Univariate 
option and then we will specify further options.

Figure 2. Choosing type of analysis—General Linear Model—Univariate

Source: The authors’ own elaboration.
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Firstly, we will have to set variables as shown in Figure 3. Our dependent vari-
able is “FW” and our Fixed Factors are “Type” and “Region”. 

Figure 3. Setting options for analysis—variable specification

Source: The authors’ own elaboration.

Secondly, we have to customize type of analysis. Therefore, we will have to specify 
our model. Therefore we select option “Model”. We will use option “Build terms” 
and we will observe “Main effects” (see the central part of the screen at Figure 4). 
Moreover, by using arrow at the middle of the screen we have to transfer our factors 
from column “Factors & Covariates” to column “Model” (see right part of Figure 4). 
Then we will click to “Continue” and by clicking on “OK” at the previous screen, 
we will perform our analysis.

Figure 4. Setting options—Specify Model—customization of analysis

Source: The authors’ own elaboration.
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In Figure 5 results of analysis are shown. For quick interpretation, we will pay 
attention to the column “Sig.” and we will search for value lower than .05 in order 
to not reject or reject our hypotheses. At the factor Type the significance value is 
.006 whereas at the factor Region the significance value is .022. Because both sig-
nificance values are lower than .05, we can reject H0 hypotheses for both factors 
(Type and Region). 

Figure 5. Result of two-way ANOVA without replication analysis in SPSS

Source: The authors’ own elaboration.

Based on this we conclude that we can conclude that there is the difference 
between means of value of expired or spoiled merchandize grouped by product 
category and that there is difference between means of value of expired or spoiled 
merchandize grouped by sales region. 

Testing the hypotheses in Excel
Same dataset is entered to Excel. In Figure 6 collected data is shown in format 
suitable for analysis in Excel. 



135  

Independent samples—more hypotheses testing

2.

Figure 6. Dataset for two-way ANOVA (without replication) analysis in Excel

Source: The authors’ own elaboration.

Then we have to select Data tab and we have to click Data Analysis (within 
Analysis group of commands). Within the list of methods, we choose ANOVA: 
two factor without replication (see Figure 7).

Figure 7. Data Analysis tab in Excel—selection of the method ANOVA: two-factor without 
replication 

Source: The authors’ own elaboration.
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In the dialog box of ANOVA: two-factor without replication we have to configure 
as follows (see Figure 8):

 – input range of the dataset including labels, in our example it is A3:E6;
 – check existence of data labels (see Labels);
 – output range, we can choose to show data at some position at the active Work-

sheet, then we have to specify exact cell from which our results are going to be 
presented (such as F3); but in our case we rather specified New Worksheet as 
the location of our results, also we can specify a name for our output (in our 
example “ANOVA”);

 – the last thing is the level of significance, i.e. alpha value. There we can use default 
value as it is already set to .05.

Figure 8. Dialog box ANOVA: two-factor without replication

Source: The authors’ own elaboration.

In Figure 9 results of data analysis is shown and we can interpret our results. 
First of all, we have basic descriptive statistical data grouped by both factors. From 
this part we can read how many observations we had in which group (see column 
Number), then we can see what the average value of expired or spoiled merchandize 
in EUR per week in each group is, and what the variance within each group is. For 
instance, when we observe product categories, the lowest average of 170 EUR is 
expired or spoiled in Meat category and if we observe regions, the lowest average 
value of spoiled or expired merchandize is in region East and it is 166.6667 EUR. 

In addition, ANOVA results are shown. In this table, the most important reading 
is p-value because by it we can decide not to reject or to reject the null hypothesis. In 
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our case the p-value for rows .006222 (remember, in our dataset product categories 
are entered to Excel, see Figure 1). In this case p-value is lower than alpha value of 
.05 and it means that we can reject the null hypothesis H0(1) and we can conclude 
that there is difference between means of value of expired or spoiled merchandize 
grouped by product category. So, this difference is statistically significant at the 
level of .05.

In addition, we can observe that in our case the p-value for columns (in our 
case, Regions) is .021524 which is lower than .05. Therefore, we can reject the 
null hypothesis H0(2), and we can conclude that there is difference between 
means of value of expired or spoiled merchandize grouped by sales region. So, 
the test results have shown that this difference is statistically significant at the 
level of .05.

Figure 9. Two-way ANOVA without replication results

Source: The authors’ own elaboration.

If ANOVA shows us that there is a statistically significant difference between 
observed groups, we have to do post hoc analysis by comparing pair of groups in 
order to explain which group differs in comparison to other group. For this purpose 
in Excel we can perform several t-tests. Procedure of t-tests is already explained in 
details in chapter about one-way ANOVA.
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Summary of the example

Dataset: The value of expired or spoiled merchandize in EUR per week in different 
sales regions is observed. In addition, the value of expired or spoiled merchandize in 
EUR per week is observed according to the product category as well. For the purpose 
of the analysis four sales regions and three product categories are defined. For each 
combination of a sales region and a product category the value of expired or spoiled 
merchandize in EUR per week is collected. On that way, 12 data values of expired 
or spoiled merchandize in EUR per week were on disposal for our analysis needs.

Data info: 
 – variable 1: product category—nominal (1—Fruits and vegetables, 2—Diaries, 

3—Meat);
 – variable 2: sales region—nominal (1—East, 2—West, 3—North, 4—South);
 – variable 3: value of expired or spoiled merchandize in EUR per week—numeric. 

The two-way ANOVA approach was used to inspect whether the average value 
of expired or spoiled merchandize grouped by product category can be considered 
the same across all three product categories. Also, in the same time, the two-way 
ANOVA approach was used to inspect whether the average value of expired or 
spoiled merchandize grouped by sales categories can be considered the same across 
all four sales categories. The results of the two-way ANOVA have shown that there 
was a statistically significant difference between product categories groups (F(2,6) = 
13.311, p = .0062). On the other side, the results of the two-way ANOVA have 
also shown that there was a statistically significant difference between sales region 
groups (F(3,6) = 7.055, p = .0215).

More info about two-way ANOVA without replication
The two-way ANOVA without replication can be observed as an extension of the 
one-way ANOVA. Whereas at the one-way analysis just one factor is observed, 
here at two-way ANOVA without replication two factors are inspected in the same 
time. Despite the fact that the two-way ANOVA without replication analysis is more 
complex than the one-way ANOVA they are sharing the same assumptions with 
additional assumption that there is no dependence or interaction between factors 
(Barrow, 2017; Randolph & Myers, 2013).

In the analysis, at both observed factors statistically significant differences are 
found. However, we do not know whether all means between all three product 
categories or all means between all four sales regions are different or the difference 
is statistically significant just between some groups. In order to find out that, in the 
following step in the analysis Tukey post hoc tests can be conducted to observe dif-
ferences between pairs of categories at given factors. The Tukey post hoc tests proce-
dure and interpretations are analogous to those explained at the one-way ANOVA.
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2.2. Two-way analysis of variance (ANOVA)  
with replication 

General information
The two-way analysis of variance (ANOVA) with replication simultaneously tests the 
effects of varying two variables (such as gender and age or wealth and geographic 
area, and their interaction) for a sample which consists of more than one respondent 
per a certain combination of variables. While in two-factor ANOVA without replica-
tion there was only one sample item (observation) for each combination of factors. 

Replication refers to the number of cases observed within the same combination 
of factors (Field, 2013; Fraser, 2016; Winston, 2016). Usually, we use this method 
in a case of a balanced research design when the size of each subgroup according 
to two factor is equal. Because then, we can calculate the mean square for each of 
the two factors, for their interaction, and for each combination of factors. 

Hypotheses
In two-way ANOVA with replication, there are more than one observation for each 
combination of the nominal variables, therefore it is possible to examine interaction 
between factors as well. So, we will have three null-hypotheses:
H0(1): There is no difference between means of observations grouped by one fac-

tor. 
H0(2): There is no difference between means of observations grouped by other 

factor. 
H0(3): There is no interaction between factors. 

The alternative hypothesis to every above stated is its negation. 
The interaction test shows us if the effects of one factor depend on the other 

factor (Balakirshnan et al., 2007; Dean & Illowsky, 2013).

Assumptions
There are the following assumptions associated with the two-way ANOVA with 
replication (Barrow, 2017; Field, 2013; Randolph & Myers, 2016):
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 – dependent variable is continuous; 
 – two independent variables should consist of at least two or more categorical, 

independent groups;
 – dependent variable should be approximately normally distributed for each 

combination of independent variables;
 – independence of observations, i.e. no relationship between the observations in 

each group or between the groups; 
 – no significant outliers because they can have a negative effect on the two-way 

ANOVA results;
 – homogeneity of variances for each combination of the groups of the two inde-

pendent variables.

Example
Situation: Recently we finished our series of seminars in area of Sustainable con-
sumption and Social responsibility in our local community center. So, we want 
to test effects of this education in real-life environment. We had 3 educations on 
various topics which included topics on Eco-friendly products and Fair trade. 
Therefore, together with the owner of the local supermarket we are collecting data 
on consumer will to purchase sustainable products in everyday life. We want to 
test is our education effective or not.

Dataset: observed number of products in a shopping cart at the checkout in a lo-
cal supermarket according to product labels, number of educations taken (no educa-
tion, one education, two educations or three educations). For each out of 4 levels of 
education we collect same number of observations (5), i.e. we have same number 
of respondents (5). Sample consisted of 20 respondents. For each respondent we 
count number of products in a shopping cart according to 3 types of product labels. 

Data info: 
 – variable 1: number of educations taken—nominal (1—No education, 2—One 

education, 3—Two educations, 4—Three educations);
 – variable 2: label of product—nominal (1—Eco-friendly, 2—Fair trade, 3—No label);
 – variable 3: number of items (products) in the shopping cart—numerical.

Hypotheses:
H0(1): There is no difference between means of number of items in shopping cart 

grouped by number of educations taken.
H1(1): There is a difference between means of number of items in shopping cart 

grouped by number of educations taken.

H0(2): There is no difference between means of number of items in shopping cart 
grouped by label of products. 
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H1(2): There is a difference between means of means of number of items in shop-
ping cart grouped by label of product.

H0(3): There is no interaction between factors. 
H1(3): There is interaction between factors. 

Testing the hypotheses in SPSS
In our example we observed how many items (product) labeled with labels in field 
of sustainable business some customer had and we observed how many educations 
in our local community this person attended in the field of sustainability and social 
responsibility, then we entered data into SPSS (see Figure 10). For instance, in the 
first row we have recorded data for respondent who did not attended seminars (see 
column “Education” where 1 means No education), and this person had only 2 
items (see “Numberofitems” column where we recorded quantity 2) labeled as Eco-
friendly products (see column “Label” where 1 meaning Eco-friendly is entered). 
For the same respondent we recorded 1, 2, 3—see row 6 at Figure 10 (as he/she did 
not attend education (1), and had 3 items labeled as 2—Fair trade) and we concluded 
entering data on contents of his/her shopping cart by entering 1, 3, 7—see row 11 
at Figure 10 (as he/she did not attend education (1), and had 7 items without any 
label in field of sustainability, 3 is entered for No label in column “Label”). Then we 
entered data for all other respondents and items in their shopping carts.

As there were five respondents from each group according to 4 education levels, 
and for each respondent we counted number of items in their shopping carts for 
3 labels, our dataset in SPSS at the end had 60 rows. 

Figure 10. Excerpt of the dataset suitable for two-way ANOVA with replication

Source: The authors’ own elaboration.
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When data is entered, we proceed to Method selection (see Figure 11). For 
two-way ANOVA with replication as a method we will choose Analyze—General 
Linear Model and select Univariate.

Figure 11. Choosing method—General Linear Model—Univariate

Source: The authors’ own elaboration.

After that, we will define variables as shown at Figure 12. Dependent variable 
is “Numberofitems”, while fixed factors are “Education” and “Label”. Now we can 
specify several options which will enable us to interpret results of the analysis. In 
this chapter we will set options for Plot diagram and Post hoc analysis. 

Figure 12. Setting basics options for the analysis—variables

Source: The authors’ own elaboration.
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Plot diagram settings are shown at Figure 13. Plot diagram will enable us to 
visualize results of ANOVA in quick and intuitive manner. It will show us inter-
relation between factors in a graphic mode. We will set Education to be shown at 
horizontal axis and Label as a separate lines, then we will click Add and we will 
just check if in the text box under word “Plots” “Education*Label” is shown and if 
the checkbox is selected for “Line Chart”. If everything is correct, we can confirm 
everything by clicking the button “Continue”. 

Figure 13. Settings for Plot diagram 

Source: The authors’ own elaboration.
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Finally, we will define options for the post hoc analysis. We will perform post hoc 
tests for Education and Label and we will mark Tukey post hoc analysis (see Fig-
ure 14). Again, we will click button “Continue” and then at previous screen confirm 
analysis by clicking to “OK” button.

Figure 14. Setting post hoc analysis options

Source: The authors’ own elaboration.

When analysis is finished, we will get results separated in several segments. 
Firstly, we will have two-way ANOVA general results (see Figure 15). On the basis 
of this table we will be able not to reject or reject our starting null hypotheses. 

Figure 15. Two-way ANOVA with replication results

Source: The authors’ own elaboration.
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We will pay attention to column “Sig.” where p-values are shown. In this column 
we will observe which values are less than .05. In our case all significance values 
are lower than .05 (Education p < .001, Label p = .041, Education * Label p < .001). 
Therefore, we can reject all three H0 hypotheses. Therefore, at significance level 
.05 we can conclude that:

 – there is a difference between means of number of items in shopping cart grouped 
by number of educations taken;

 – there is a difference between means of means of number of items in shopping 
cart grouped by label of product;

 – there is interaction between factors.
In Figure 16 the plot diagram is shown. We can observe that Education and 

Label curve intersect which means that those variables are in interaction and that 
we have to take this fact into account when interpret our post hoc data.

Figure 16. Plot diagram 

Source: The authors’ own elaboration.

As the two-way ANOVA results have shown that there are differences between 
groups (factors), it is recommended to do post hoc analysis to get better insight 
into the results. Results of the post hoc analysis help us to observe between which 
groups are strongest differences and are there some groups which do not differ 
from each other.

In Figure 17 Post hoc analysis results are shown based on Label. We can observe 
that between those who did not attend any education (1) and those who attended 
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two educations (3), then between those who did not attend any education (1) and 
those who attended three educations (4), and between those who attended one 
education (2) and those who attended three educations (4) at level of .05, there is 
statistically significant difference between means of number of items in shopping 
cart. While other pairs of groups did not show statistically significant difference 
(p-values in column “Sig.” are higher than .05).

Figure 17. Post hoc analysis results—Education

Source: The authors’ own elaboration.

Figure 18. Post hoc analysis results—Label

Source: The authors’ own elaboration.
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In Figure 18 Post hoc analysis results are shown based on Education. We can 
observe that between products with label Fair trade (2) and products with no la-
bel (3) at level of .05, there is a statistically significant difference between means 
of number of items in shopping cart. While other pairs of groups did not show 
statistically significant difference (p-values in column “Sig.” are higher than .05).

Testing the hypotheses in Excel
To perform two-way ANOVA with replication in Excel, it is extremely important 
to have the same number of observations for one factor, in our case—education 
level. Therefore, we made and entered 5 observations for each level of education 
(see rows in Figure 19). 

Figure 19. Dataset for two-way ANOVA (with replication) analysis in Excel

Source: The authors’ own elaboration.

Data is entered into Excel in format suitable for data analysis grouped by num-
ber of educations as we have same number of respondents for each level of educa-
tion, then in columns we enter another grouping variable, i.e. product labels (see 
Figure  19). In each row we enter data on one survey participant. For instance, we 
enter data for participants which did not attend any seminar (no education) in 
five rows, each row for one participant. First participant without education put 2 
eco-friendly items, 3 fair-trade items and 7 no label items to his/her shopping cart, 
while second participant without education put 4 eco-friendly items, 5 fair trade 
items and 10 items without labels into his/her shopping cart.

To perform two-way ANOVA with replication, we have to click Data tab and we 
have to choose Data Analysis tab (within Analysis group of commands). Within 
the list of methods, we choose ANOVA: two factor with replication (see Figure 20).
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Figure 20. Data Analysis tab in Excel—selection of the method ANOVA:  
two-factor with replication

Source: The authors’ own elaboration.

In the dialog box of ANOVA: two-factor with replication we have to configure 
as follows (see Figure 21):

 – input range of the dataset including labels, in our example it is B3:E23;
 – input number of rows per sample (i.e. number of observations), in our case 5;
 – output range, we can choose to show data at some position at the active Work-

sheet, then we have to specify exact cell from which our results are going to be 
presented (such as F3); but in our case we rather specified New Worksheet as 
the location of our results, also we can specify a name for our output (in our 
example ANOVA);

 – the last thing is the level of significance, i.e. alpha value. There we can use default 
value as it is already set to .05.

Figure 21. Dialog box ANOVA: two-factor with replication

Source: The authors’ own elaboration.
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Figure 22. Two-way ANOVA with replication results

Source: The authors’ own elaboration.

In Figure 22 there are results of two-way ANOVA with replication analysis. 
First of all, in Excel we have basic descriptive statistical data grouped by factor in 
rows (number of educations) systemized by factor in columns (in our case prod-
uct labels). From this part we can read how many observations we had in which 
combination of factors (see rows Count in each sub table), then we can see what 
the average number of items for each combination of factors, together with data 
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on variance. For instance, when we observe sub table “No education”, we will see 
that there are on average 5.5 items labeled as Eco-friendly in the shopping cart, 5 
items labeled as Free trade, and 10.6 items with no label. On the other hand, in sub 
table “Three educations” there are on average 14 items labeled as Eco-friendly, 14 
labeled as Fair-trade and 6 with no label.

In addition, ANOVA results are shown. In this table, the most important reading 
is p-value because by it we can decide not to reject or to reject the null hypoth-
esis. In our case the p-value for Sample (in our case this data refers to number of 
education) is .000132 and it is less than significance level of .05 which means that 
we can reject the null hypothesis H0(1), and we can conclude that there is a dif-
ference between means of number of items in shopping cart grouped by number 
of educations taken. So, this difference is statistically significant at the level of .05.

In addition, we can observe that in our case the p-value for columns (in this 
case, product labels) is .041269 which is lower than .05. Therefore, we can reject 
the null hypothesis H0(2), and we can conclude that there is difference between 
means of means of number of items in shopping cart grouped by label of product. 
In other words, this difference is statistically significant at the level of .05.

Moreover, the p-value for testing interaction between our two factors (number 
of education and label of products) is 2.08E-08 which is lower than .05 and means 
that we can reject H0(3) and consequently conclude that there is an interaction 
between factors and we have to take it into account when we interpret our data. 
Because if an interaction effect is present, the impact of one factor depends on the 
level of the other factor.

Summary of the example
Dataset: The number of products in a shopping cart at the checkout in a local 
supermarket according to product labels is observed. Three product labels have 
been defined. Overall, 20 respondents have been selected to participate in the study 
according to their number of taken educations. Four levels of educations taken are 
recognized. In the study participated equal number of respondents according to 
the number of educations taken. Consequently, at each level of educations taken 
we had 5 respondents for which we measured the number of products with dif-
ferent product labels. On that way, three measurement for each respondent have 
been conducted.

Data info: 
 – variable 1: number of educations taken—nominal (1—No education, 2—One 

education, 3—Two educations, 4—Three educations);
 – variable 2: label of product—nominal (1—Eco-friendly, 2—Fair trade, 3—No 

label);
 – variable 3: number of items (products) in the shopping cart—numerical.
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The two-way ANOVA with replication approach was used to inspect whether 
our education is effective in changing consumer habits to purchase sustainable 
products in everyday life. The results have shown that there was a statistically sig-
nificant interaction between the number of educations taken and label of product 
(F (6, 48) = 12.457, p < .001).

More info about two-way ANOVA with replication
All previously mentioned additional information about two-way ANOVA without 
replication apply to two-way ANOVA with replication. 

The main difference between two-way ANOVA without replication and two-way 
ANOVA with replication is the sample structure. In the ANOVA without replica-
tion we have only a single observation for each combination of nominal variables 
while in two-way ANOVA with replication we have more than one observation. 
In other words, in two-way ANOVA without replication design there is only 1 
experimental unit for each combination of the factors. While in two-way ANOVA 
with replication “there are more than one experimental unit per combination of 
the factors. In such design we have enough degrees of freedom and the interaction 
between factors can be estimated” (Field, 2013; Fraser, 2016). It is recommended 
that in two-way ANOVA with replication we should use balanced data or sample 
with uniform size to get results in efficient manner”. 
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3.1. The paired samples t-test

General information
Paired t-test is used to compare two related means mostly coming from a repeated 
measures design. In other words, data are collected by two measures from each 
observation, e.g. before and after a process or a phenomenon. For example, a re-
searcher wants to test if the changes in the weight before and after a diet are sig-
nificantly different from zero.

Hypotheses
H0: There is no difference between the paired mean scores. 
H1: There is a difference between the paired mean scores.

Assumptions
There are the following assumptions associated with the paired samples t-test:

 – the level of measurement should be interval or ratio (what in SPSS is indicated 
as scale level of measurement);

 – the sample should be randomly selected which means that the data constitute 
a representative portion of the total population and every individual has the 
same chance to be selected into the sample (Verma & Abdel-Salam, 2019; Wa-
ters, 2011);

 – the difference scores (not the raw scores) should follow the normal distribution. 

Example
The community managing the apartment blocks has chosen a random group con-
sisting of 58 families living in middle-size flats. The group got the instructions 
about electricity savings and recommendation to use the tools of controlling the 
electricity expenses. We have recorded two electricity bills of every family—one 
from the period of before, and the other one—after the recommendations. 

Data info:
 – variable 1: pretest—expenses before the recommendation—measurement level: 

scale (values: recorded electricity expenses per flat per month in EUR);
 – variable 2: posttest—expenses after the recommendation—measurement level: 

scale (values: recorded electricity expenses per flat per month in EUR).

Testing the assumptions
Normality of distribution of differences

The first step in testing the normality of differences between scores is to calculate 
a new variable that is the difference between pretest and posttest values. 
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Figure 1. Calculating the difference between pretest and posttest values—path (1)

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 2. Calculating the difference between pretest and posttest values—path (2)

Source: The authors’ own elaboration, IBM SPSS screenshot.
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The commonly used test for testing the normality is the Kolmogorov-Smirnov 
test. This test compares the set of scores obtained in the study to the normally 
distributed scores.

The procedure of running the Kolmogorov-Smirnov test is shown in part 3,  
chapter 1. Of course, in the paired samples t-test we don’t split the file and we 
measure only one variable—difference.

Figure 3. Kolmogorov-Smirnov test—results

Source: The authors’ own elaboration, IBM SPSS screenshot.

We decide about the hypothesis by interpreting the p-value. If the test is sig-
nificant (p <. 05) it means that the data do not follow normal distribution. If the 
test is non-significant (p > .05) the distribution of the obtained scores is normal 
(Field, 2013; Verma & Abdel-Salam, 2019). In this case, p ≥ .200 which means that 
the assumption of normality is fulfilled.
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Figure 4. Paired samples t-test—path

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 5. Paired samples t-test—dialog box

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Figure 6. Paired samples t-test—results

Source: The authors’ own elaboration, IBM SPSS screenshot.

Results
In the upper table of the outcome (Paired Samples Statistics) we can read that the 
mean for the pretest is 59.53 and for the posttest is 55.95. It means that the average 
electricity bill declined by 3.58 EUR.
In the lowest table we can check if the difference is statistically significant by inter-
preting the p-value from the last column (Sig. 2-tailed). This value equals p < .001 
which is lower than the critical value p = .05. It means that we can reject the null 
hypothesis and interpret the results as the statistically significant difference between 
pretest and posttest.

Paired samples t-test hypotheses resolution:
p < .05—there is a significant difference between pretest and posttest; reject H0;
p > .05—there is no significant difference between pretest and posttest; do not 
reject H0.

Effect size
In order to examine whether the observed difference is important, we can calculate 
effect size. For paired samples t-test a popular measure is Cohen’s d:

1 2

pre

x x
d s

−
=

x1, x2  – means of both groups;
spre – standard deviation of the pretest group.
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The Cohen’s d has the following interpretation:
Below 0.2—no effect,
< 0.2 – 0.5)—small effect,
< 0.5 – 0.8)—medium effect,
0.8 and more—large effect.

55.95 59.53
1.04

3.45
d

−
= =

In our case, we can observe the large effect (d = 1.04).

Summary
The community managing the apartment blocks has chosen a random group con-
sisting of 58 families living in middle-size flats. The group got the instructions 
about electricity savings and recommendation to use the tools of controlling the 
electricity expenses. We have recorded two electricity bills of every family—one 
from the period of before, and the other one—after the recommendations. 

Data info:
 – variable 1: pretest—expenses before the recommendation—measurement level: 

scale (values: recorded electricity expenses per flat per month in EUR);
 – variable 2: posttest—expenses after the recommendation—measurement level: 

scale (values: recorded electricity expenses per flat per month in EUR).
The electricity expenses of the households changed significantly after recom-

mendations t(58) = –7.857, p < .001, d = 1.04. The bills decreased on average from 
59.53 EUR (SD = 3.45) to 55.95 EUR (SD = 4.24). A t-test revealed that the differ-
ence of 3.58 EUR is statistically significant (p < .001), suggesting that the informed 
groups spent less on electricity than the control group. Cohen’s d statistic indicates 
the large effect. 

More info about the paired samples t-test
In order to estimate the effect size, we used pretest standard deviation as a baseline. 
The proposed formula of calculating the denominator is used especially when 
standard deviation is expected to be increased remarkably by the treatment. Nev-
ertheless, the formula of standard deviation in the denominator may be calculated 
in other ways. The highly recommended estimate of the baseline is sav given by the 
following formula:

2 2

2
pre post

av
s s

s
+

=
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It enables us to compare the results with effect size d estimations for one group 
or two independent groups. However, sometimes in the literature the effect size is 
calculated using standard deviation of differences between scores. This approach 
is not very advisable since it may give notably different estimations in comparison 
with different methods (e.g. when the standard deviation of differences is small, 
the d estimation is larger than the calculation with sav) (Cumming, 2012).
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3.2. Wilcoxon signed-rank test

General information
The Wilcoxon signed rank test is a commonly used nonparametric alternative to 
the paired samples t-test (when the assumptions are violated). It applies to the 
related samples when we compare the scores in two different points or under two 
different conditions (e.g. before and after the treatment). It is also used when the 
dependent variable is measured at ordinal scale. Since the Wilcoxon signed rank 
test does not require the normality of distribution of the data, it does not compare 
means but ranks ranks (Pallant, 2011; Verma & Abdel-Salam, 2019).

Hypotheses:
H0: There is no difference between the scores. 
H1: There is a difference between the scores.

Assumptions
There are the following assumptions associated with the Wilcoxon signed-rank test:

 – the level of measurement of dependent variable must be at least ordinal;
 – the score of both groups should be related. 

Example
Dataset: The company managing sharing bicycles decided to check the impact of the 
station location on use of the bicycles. The station was set 200 m from the entrance 
of the high school. Random sample of the students has been selected. Students were 
asked about the frequency of using the bicycles. In the middle of the semester the 
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company set the station closer to the entrance. After one month, the same group 
of students were asked about the frequency of using bicycles again. 

Data info:
 – variable 1: pretest—ordinal (declared frequency of using the shared bicycles; 

1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never);

 – variable 2: posttest—ordinal (declared frequency of using the shared bicycles; 
1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never).

Figure 7. Wilcoxon signed-rank test—path

Source: The authors’ own elaboration, IBM SPSS screenshot.

Figure 8. Wilcoxon signed-rank test—dialog box

Source: The authors’ own elaboration, IBM SPSS screenshot.
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Figure 9. Wilcoxon signed-rank test—results

Source: The authors’ own elaboration, IBM SPSS screenshot.

Results
In the lowest table we can check if the difference is statistically significant by in-
terpreting the p-value from the last row (Asymp. Sig. (2-tailed)). This value equals 
p = .014 which is lower than the critical value p = .05. It means that we can reject 
the null hypothesis and interpret the results as the statistically significant difference 
between pretest and posttest.

Wilcoxon signed ranked test hypotheses resolution:
p < .05—there is a significant difference between pretest and posttest; reject H0;
p > .05—there is no significant difference between pretest and posttest; do not 
reject H0.

Effect size
The effect size measure for Wilcoxon signed ranked test is r that is calculated using 
the statistic Z value and N which is total number of observations in both groups 
(the sum of observations in two groups):
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Z
r

N
=

The r has the following interpretation:
Below .1—no effect,
< .1 – .3)—small effect, 
< .3 – .5)—medium effect,
.5 and more—large effect (Field, 2013; Pallant, 2011).

2.449
.29

70
r

−
= =

In our example, r = .29 which may be considered as a small effect.

Summary
Dataset: The company managing sharing bicycles decided to check the impact of the 
station location on use of the bicycles. The station was set 200 m from the entrance 
of the high school. Random sample of the students has been selected. Students were 
asked about the frequency of using the bicycles. In the middle of the semester the 
company set the station closer to the entrance. After one month, the same group 
of students were asked about the frequency of using bicycles again. 

Data info:
 – variable 1: pretest—ordinal (declared frequency of using the shared bicycles; 

1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never);

 – variable 2: posttest—ordinal (declared frequency of using the shared bicycles; 
1—more than once a day; 2—every day; 3—2–4 times a week; 4—once a week; 
5—once a month; 6—less than once a month; 7—never).

After relocation of the station, the frequency of using the shared bicycles changed 
significantly Z(35) = –2.45, p = .014. The students used the shared bicycles more 
frequent (Mdn = 4) compared to the initial location (Mdn = 5). However, effect 
size is rather small (r = .29).
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